The Art of Cryptography: Integral Lattices, summer 2010
 Prof. Dr. Joachim von zur Gathen, Daniel Loebenberger

11. Exercise sheet Hand in solutions until Sunday, 04 July 2010, 23:59h.

Exercise 11.1 (The Coppersmith method).

In the lecture we discussed the following algorithm for finding small polynomials with high-order roots:

Algorithm. Small polynomial with high-order roots.
Input: a monic linear polynomial $f \in \mathbb{Z}[t]$, positive integers N, c, and k, and real μ with $0<\mu \leq 1$.
Output: $g \in \mathbb{Z}[t]$.

1. $\quad \ell \longleftarrow\lceil k / \mu\rceil$.
2.

$$
h_{i} \longleftarrow \begin{cases}N^{k-i} f^{i} & \text { for } 0 \leq i \leq k, \\ x^{i-k} f^{k} & \text { for } k<i<\ell .\end{cases}
$$

3. Form the $\ell \times \ell$ matrix A whose rows are the coefficient vectors of $\left.h_{0}(c t), \ldots, h_{\ell-1}(c t)\right)$.
4. Apply the basis reduction algorithm to the rows of A, with output $B=U A$ and $U \in \mathrm{GL}_{\ell}(\mathbb{Z})$ unimodular. Let $\left(u_{o}, \ldots, u_{\ell-1}\right) \in \mathbb{Z}^{\ell}$ be the top row of U.
5. Return $g=\sum_{0 \leq i<\ell} u_{i} h_{i}$.
(i) Implement the algorithm in a programming language of your choice. Note that the basis reduction code in MuPAD supplied on the webpage is extremely slow when compared to the built in Maple-routine or the C++ library NTL.
(ii) Play around with the parameters of the above algorithm. In particular perform the following experiments: Set $N=2183, \mu=1 / 2, f=x+u, c=59-u$. Now compute for all $1 \leq k \leq 15$ the smallest u for which your algorithm produces you a valid result.
(iii) What do the results tell you in the context of the security of RSA primes? Explain detailed.
