The Art of Cryptography: Integral Lattices, summer 2010
 Prof. Dr. Joachim von zur Gathen, Daniel Loebenberger

12. Exercise sheet Hand in solutions until Sunday, 11 July 2010, 23:59h.

Exercise 12.1 (Gaussian distributions).

In the lecture we discussed the Gaussian distributions

$$
\begin{aligned}
\varrho_{r}^{(n)}: & \longrightarrow \mathbb{R}, \\
& x
\end{aligned} \longmapsto \frac{1}{r^{n}} \exp \left(-\pi\left(\frac{\|x\|}{r}\right)^{2}\right)
$$

(i) Draw a meaningful plot of the functions $\varrho_{r}^{(1)}$ and $\varrho_{r}^{(2)}$ for $r=0.5,1,2,10$.
(ii) Plot for the same values of r the cumulative distribution $\int_{-\infty}^{x} \varrho_{r}^{(1)}(t) \mathrm{d} t$.

We now consider the distribution τ_{r} on the torus $\mathbb{T}:=\mathbb{R} / \mathbb{Z}$ induced by the distribution $\varrho_{r}^{(1)}$ via the canonical projection of \mathbb{R} into \mathbb{T}.
(iii) Express formally τ_{r} in terms of $\varrho_{r}^{(1)}$.
(iv) Plot the induced Gaussian distribution on \mathbb{T} for the above values of r.

Exercise 12.2 (Δ of two balls).
(8+5 points)
Let $B_{n}=\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1\right\}$ be the n-dimensional unit ball. Consider two 2dimensional balls of radius $\sqrt{2}$ whose distance of the centers is exactly 1 . For example consider the two balls $\sqrt{2} B_{2}$ and $(0,1)+\sqrt{2} B_{2}$. In the lecture we defined for two probability distributions X and Y over a set S their statistical distance $\Delta(X, Y)$ as

$$
\Delta(X, Y)=\max \{|X(A)-Y(A)|: A \subset S\} .
$$

Consider here the distributions $X=\mathcal{U}\left(\sqrt{2} B_{2}\right)$ and $Y=\mathcal{U}\left((0,1)+\sqrt{2} B_{2}\right)$.
(i) Draw a picture of the two balls. Where in the picture do you find the statistical difference $\Delta(X, Y)$?
(ii) Compute $\Delta(X, Y)$. Hint: You need a bit basic calculus here. Parametrize the balls by appropriate functions in one variable and compute some areas.
(iii) What do you observe when you vary the radius and the distance? Perform experiments!

Exercise 12.3 (The α-GapSVP).
(6 points)
In the lecture we encountered the following definition of the α-GapSVP problem:

Definition. For a function $\alpha: \mathbb{N} \longrightarrow \mathbb{R}$ with $\alpha(n) \geq 1$ for all n, we define the α-gap shortest vector problem α-GapSVP as follows. Input is a basis A of an n dimensional lattice L and a positiv real number d. The answer is

$$
\begin{cases}\text { yes } & \text { if } \lambda_{1}(L) \leq d \\ \text { no } & \text { if } \lambda_{1}(L) \geq \alpha(n) \cdot d\end{cases}
$$

When $d<\lambda_{1}(L)<\alpha(n) \cdot d$, any answer is permitted.
(i) Give an algorithm that approximates $\lambda_{1}(L)$ by binary search on d using a subroutine for α-GapSVP.
(ii) How good did your algorithm approximate $\lambda_{1}(L)$?

