The Art of Cryptography: Integral Lattices, summer 2010 Prof. Dr. Joachim von zur Gathen, Daniel Loebenberger

13. Exercise sheet Hand in solutions until Sunday, 17 July 2010, 23:59h.

Exercise 13.1 (Did you get it?). (26 points)		
(i)	Given a basis B , what is the lattice spanned by B ?	1
(ii)	Which properties must be fulfilled for a <i>reduced</i> basis <i>B</i> ?	2
(iii)	What is the purpose of lattice basis reduction?	2
(iv)	Why don't we simply use Gram-Schmidt orthogonalization to reduce the lattice basis?	1
(v)	Is the basis $A=\left(\begin{array}{cc}12&3\\13&5\end{array}\right)$ reduced? What about the matrix $B=\left(\begin{array}{cc}1&2\\8&-5\end{array}\right)$?	3
(vi)	Why is the volume of a lattice independent of the choice of the basis?	2
(vii)	Give the definition of the second successive minimum $\lambda_2(L)$ of a lattice L of dimension $n \geq 2$.	1
(viii)	State one important inequality that relates the length of a shortest nonzero vector of a lattice to its volume.	1
(ix)	Name one cryptographic primitive that was broken using lattice basis reduction and describe the attack.	4
(x)	State one algorithm that finds an approximation to the closest vector problem up to a factor of $2^{n/2}$ where n is the dimension of the lattice.	2
(xi)	Assume you performed a Diffie-Hellman key exchange in \mathbb{Z}_p where the size of the prime was 2000 bit. Daniel suggests to take the first 128 bits of the shared secret as a secret key for a symmetric cipher like AES. Is this a good idea? Justify your answer.	3
(xii)	What is the purpose of the Coppersmith method? Given one cryptographic application.	2
(xiii)	Is the 2^n – SVP problem difficult? What about the $2^{n/17}$ – CVP-problem?	2
The deadline for the following exercise is Sunday, 24 July 2010, 23:59h.		
Exerc	cise 13.2 (Teach!). (0+10 points)	
Go carefully through the supplied lecture notes and state at least three reasonable		+10

questions that would be suitable for a written exam. Analyze the effort that is

needed to solve each of your questions!