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Most of the following material is taken from Washington (2003).

1. Lift-off

Fix an elliptic curve E defined over a field F,; and a divisor p of the curve size #E(F,) which
is coprime to the characteristic. Then (with point coordinates allowed from the algebraic
closure F, of F,)

Elp| 2 Zy x Zy.

So we could define kind of a scalar product on E[p] as follows. Fix a Z,-basis (T1,T%) of E[p]
and choose values for e(T;, T;) in some appropriate group. Since we want e bilinear we then
have e(s1T1 + s2T2,t1Th + toTs) = Z” sie(T;, T;)t;. Actually, we want more: the pairing
must also be non-degerenate, that is, if for all T € E[p] we have e(S,T) = 0 then we have
S = 0, and also if for all S € E[p] we have e(S,T) = 0 then we have T = 0. We can grant
this by requiring that the matrix [e(73, T})], ; is invertible. All these things are now pairings
on the p-torsion. However, we do not know anything about how to compute the pairing
efficiently nor whether this is compatible with possible algebraic structures. In that light, it
is only a minor complication to take a multiplicatively written group for the values: Let

up:{:ceﬂ:cp:l}

be the group of pth roots of unity. Since p is coprime to the characteristic we have #p, = p
and so p is a cyclic group of order p.

We will consider the (modified) Tate pairing 7, which is slightly easier to compute than
the Weil pairing e,. The two are connected by a congruence of the form

(T, S>p
5.1),

ep(S,T) =

The Weil pairing is obviously antisymmetric, ie. e, (T, S) = e,(S,T)~!. Actually, e,(S, S) =1
and so we cannot use it for cryptography in the symmetric setting although it has G; = G2 =
Elp].

2. Divisors

Consider the simplest possible non-trivial function: a line f = ax + by + ¢. [By abuse of
language we also call the function ‘line’, though strictly speaking the line is given by the
solutions of f = 0.] Say, it passes through the points Py, P>, Ps € E. If b # 0 then the line
does not pass through O and f has a triple pole there. We obtain

diV(CL{E + by + C) = [Pl] + [PQ] + [Pg] - 3[0]
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If b = 0 then the line passes through, say, P3s = (x3,y3), —P3 = (x3, —y3) and O and we find
div(z — z3) = [P3] + [—Pg] — 2[(9]

Consequently, rewriting P = Py + P,

(1) %(ﬂi%ﬂﬁzmHﬂﬂﬁﬂ+m_wL
Tr — I3
[M+W—m+m+mﬂm@ﬁﬂﬁ>
Tr — T3

This is related to the question which divisors are principal, ie. are divisors of a function.
Since we can choose the line through any two given points P, P, € E we can replace a
divisor [Py] + [Ps] with [Py 4+ P»] + [O] plus the divisor of some function g.

THEOREM 2. Consider an elliptic curve E and a divisor D. Then
3f: D = div(f)

iff
sum(D) = O and deg(D) = 0.

3. Pairings

3.1. Tate pairing. Fix ksuchthatp|¢®—1. Given P € E(F,)[p| and Q € E(Fy)/pE(F ).
Assume fp is a function with divisor p[P + R] — p[R] for some R, and @1 — Q2 = Q such
that P+ R, R,Q1, Q> are all different and non-zero. Then we define the Tate-Lichtenbaum
pairing by

EE)lp) x B /pEEs) — Fif (F5)

_>
b (P,Q) — (PQ),

fr(Q1)
fr(Q2)’
and the modified Tate-Lichtenbaum pairing
E(Fq)[p] X E(Fqk)/pE(Fqk) — pup C F%}m
Tp: q"—1

(P.Q) — (P.Q),7 .
We should actually write @ + pE(FF ) everywhere, however we can ignore it usually.

SIDE REMARK. In practice, we will have G1 := E(Fy)[p] be isomorphic to Z, and map
‘another’ part of E[p] = Z, x Z, into E(F,)[p], so that we have a pairing defined on G and
another group Go both of order p.

Back to our aim: given P € G := E(F,)[p] and Q € Gz := E(F») we want to compute

P

fP(Ql)) v
fP(Q2)

Since the final exponentiation does not pose serious problems we are left with the

nra -
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Task 3. Let P,Q € E (possibly subject to additional conditions) and assume div fp =
p[P + R] — p[R] with R € E and Q = Q1 — Q2 such that the divisor of fp and the divisor
[Q1] — [Q2] are disjoint. Compute

fr(@1)

fp(Q2)

3.2. Miller’s algorithm. The tricky part is actually to find that function fp. We break
this down by successively solving the following, easier and slightly more complicated

Task(j). Let P,Q € E (possibly subject to additional conditions) and assume
div fj = Dj := j[P + R] = j[R] = [jP] + (0]

with R € E such that the divisor of fp and the divisor Do = [Q1] — [Q2] with sum Q.
Compute

fi(Q1)

£i(Q2)

Assuming that Task(j) and Task(k) have been solved we want to derive a solution for
task j + k. Let £ = ax + by + ¢ be the line through jP and kP, and let v = x + d be the
vertical line trough (j 4+ k)P. Then by (1) we have

div<ax+by+c

EUES) ~ P+ P~ (G + P - O]

By assumption

div(f;) = j[P + R] — j[R] — [P] + [O],
div(fr) = k[P + R] — k[R] — [kP] + [O].

Multiplying the functions we obtain

ax +by+c

aiv (7SS ) = G4 0[P+ B = G+ DIR] = [6 + DP]+ (0] = Dy

Consequently, firr = vf; fk%b%’;c for any non-zero constant 7y is ‘the’ function needed in

Task(j + k). Actually, we only need the evaluation of this function at Dg:

ax+by+c

fi+u(Q1) _ fi(@) fru(@)
Fire(@2)  fi(Q2) fe(Q2) awtbyre

x+d

(z,y)=Q1

(4)

(z,9)=Q2

now describes the value of fj;1 at Dg. All we need are the values of f; and fi at Do,
the points jP and kP. Performing the addition jP + kP gives the point (j + k)P and the
function %b%“, evaluating at Dg and then multiplying with the values of f; and f; at Dg

yields the desired value of f;;1 at D¢ along with the point (j + k)P.
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If now P € E[p| then pP = O. Thus solving Task(p) yields with div(f,) = p[P + R] —
p[R] — [O] + [O] = div(fp) the desired value

fr(@1) _ fp(Q1)

fP(Q2)  fp(Q2)

Notice that Task(0) is trivial: Dy =0, so fo = 1. Also Task(1) is easy: Dy = [P + R] —

[R] — [P] + (0], so fi = 554 where £ = ax + by + ¢ is the line through P and R and

v = x + d is the vertical line through P 4+ R. Thus

az+by+c
[(@) _ 7 ley=0
J1(Q2) aztbytc
o+d (mvy):QZ

Miller’s algorithm now simply follows an addition chain for pP and performs point addi-
tion and point doublings along with multiplying the corresponding values of f;. If we simply
use add and double we obtain

ALGORITHM 5. Miller’s algorithm.
Input: Points P, R, Q1,Q2 € F, the desired index p.

Output: The value 42434 where div fp = p[P + R] — p[R] — [pP] + [O].

1. Compute P + R, the line £ = ax + by + ¢ through P and R, the vertical line v =z 4+ d
ax+by+c
through P + R and let g < #h“ﬂ:‘?l

zt+d |(z,y):Q2

2. Let f+ g, J+ P, j+ 1.
3. Write p = (pr—1,--.,p1,p0) in base 2.
4. Fori=1r—2 down to 0 do 5-15
Let £ = ax + by + ¢ be the tangent at J.
S+ 2J.
Let v = z + d be the vertical line through S.
Let £ f2- £, - 2|,
9. J S, 5+ 25.
10. If p; =1 then

®© N

11. Let £ = ax + by + ¢ be the line through J and P.
12. S+ J+P.

13. Let v = z + d be the vertical line trough S.

14. Let f < f-9-4lo, " tlo,:

15. J— S, j+—j5+1.

16. Return f.

As a consequence computing a pairing is only a constant factor slower than a scalar multi-
plication by p. (Exercise!)
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