
P
le
a
se

,
d
o

n
o
t
d
is
tr

ib
u
te

!

TATE PAIRING

An extract of Elliptic Curve Cryptography, Winter term 2009/10

Michael Nüsken

August 5, 2010

Most of the following material is taken from Washington (2003).

1. Lift-off

Fix an elliptic curve E defined over a field Fq and a divisor p of the curve size #E(Fq) which
is coprime to the characteristic. Then (with point coordinates allowed from the algebraic
closure Fq of Fq)

E[p] ∼= Zp × Zp.

So we could define kind of a scalar product on E[p] as follows. Fix a Zp-basis (T1, T2) of E[p]
and choose values for e(Ti, Tj) in some appropriate group. Since we want e bilinear we then
have e(s1T1 + s2T2, t1T1 + t2T2) =

∑

i,j sie(Ti, Tj)tj . Actually, we want more: the pairing
must also be non-degerenate, that is, if for all T ∈ E[p] we have e(S, T ) = 0 then we have
S = O, and also if for all S ∈ E[p] we have e(S, T ) = 0 then we have T = O. We can grant
this by requiring that the matrix [e(Ti, Tj)]i,j is invertible. All these things are now pairings
on the p-torsion. However, we do not know anything about how to compute the pairing
efficiently nor whether this is compatible with possible algebraic structures. In that light, it
is only a minor complication to take a multiplicatively written group for the values: Let

µp =
{

x ∈ k xp = 1
}

be the group of pth roots of unity. Since p is coprime to the characteristic we have #µp = p
and so µp is a cyclic group of order p.

We will consider the (modified) Tate pairing τp which is slightly easier to compute than
the Weil pairing ep. The two are connected by a congruence of the form

ep(S, T ) ≡
〈T, S〉p
〈S, T 〉p

.

The Weil pairing is obviously antisymmetric, ie. ep(T, S) = ep(S, T )
−1. Actually, ep(S, S) = 1

and so we cannot use it for cryptography in the symmetric setting although it has G1 = G2 =
E[p].

2. Divisors

Consider the simplest possible non-trivial function: a line f = ax + by + c. [By abuse of
language we also call the function ‘line’, though strictly speaking the line is given by the
solutions of f = 0.] Say, it passes through the points P1, P2, P3 ∈ E. If b 6= 0 then the line
does not pass through O and f has a triple pole there. We obtain

div(ax+ by + c) = [P1] + [P2] + [P3]− 3[O].



P
le
a
se

,
d
o

n
o
t
d
is
tr

ib
u
te

!

2 Michael Nüsken

If b = 0 then the line passes through, say, P3 = (x3, y3), −P3 = (x3,−y3) and O and we find

div(x − x3) = [P3] + [−P3]− 2[O].

Consequently, rewriting P3 = P1 + P2,

div

(

ax+ by + c

x− x3

)

= [P1] + [P2]− [P1 + P2]− [O],(1)

or

[P1] + [P2] = [P1 + P2] + [O] + div

(

ax+ by + c

x− x3

)

.

This is related to the question which divisors are principal, ie. are divisors of a function.
Since we can choose the line through any two given points P1, P2 ∈ E we can replace a
divisor [P1] + [P2] with [P1 + P2] + [O] plus the divisor of some function g.

Theorem 2. Consider an elliptic curve E and a divisor D. Then

∃f : D = div(f)

iff
sum(D) = O and deg(D) = 0.

3. Pairings

3.1. Tate pairing. Fix k such that p | qk−1. Given P ∈ E(Fq)[p] and Q ∈ E(Fqk)/pE(Fqk).
Assume fP is a function with divisor p[P + R] − p[R] for some R, and Q1 − Q2 = Q such
that P + R,R,Q1, Q2 are all different and non-zero. Then we define the Tate-Lichtenbaum

pairing by

〈·, ·〉p :
E(Fq)[p]× E(Fqk)/pE(Fqk) −→ F

×

qk
/
(

F
×

qk

)p

,

(P,Q) 7−→ 〈P,Q〉p = fP (Q1)
fP (Q2)

,

and the modified Tate-Lichtenbaum pairing

τp :
E(Fq)[p]× E(Fqk)/pE(Fqk) −→ µp ⊆ F

×

qk
,

(P,Q) 7−→ 〈P,Q〉
qk−1

p
p .

We should actually write Q + pE(Fqk) everywhere, however we can ignore it usually.

Side remark. In practice, we will have G1 := E(Fq)[p] be isomorphic to Zp and map
‘another’ part of E[p] ∼= Zp×Zp into E(Fqk)[p], so that we have a pairing defined on G1 and
another group G2 both of order p.

Back to our aim: given P ∈ G1 := E(Fq)[p] and Q ∈ G2 := E(Fqk) we want to compute

τp(P,Q) =

(

fP (Q1)

fP (Q2)

)

qk−1
p

.

Since the final exponentiation does not pose serious problems we are left with the



P
le
a
se

,
d
o

n
o
t
d
is
tr

ib
u
te

!

Tate pairing 3

Task 3. Let P,Q ∈ E (possibly subject to additional conditions) and assume div fP =
p[P + R] − p[R] with R ∈ E and Q = Q1 − Q2 such that the divisor of fP and the divisor
[Q1]− [Q2] are disjoint. Compute

fP (Q1)

fP (Q2)
.

3.2. Miller’s algorithm. The tricky part is actually to find that function fP . We break
this down by successively solving the following, easier and slightly more complicated

Task(j). Let P,Q ∈ E (possibly subject to additional conditions) and assume

div fj = Dj := j[P +R]− j[R]− [jP ] + [O]

with R ∈ E such that the divisor of fP and the divisor DQ = [Q1] − [Q2] with sum Q.
Compute

fj(Q1)

fj(Q2)
.

Assuming that Task(j) and Task(k) have been solved we want to derive a solution for
task j + k. Let ` = ax + by + c be the line through jP and kP , and let v = x + d be the
vertical line trough (j + k)P . Then by (1) we have

div

(

ax+ by + c

x+ d

)

= [jP ] + [kP ]− [(j + k)P ]− [O].

By assumption

div(fj) = j[P +R]− j[R]− [jP ] + [O],

div(fk) = k[P +R]− k[R]− [kP ] + [O].

Multiplying the functions we obtain

div

(

fjfk
ax+ by + c

x+ d

)

= (j + k)[P +R]− (j + k)[R]− [(j + k)P ] + [O] = Dj+k.

Consequently, fj+k = γfjfk
ax+by+c

x+d
for any non-zero constant γ is ‘the’ function needed in

Task(j + k). Actually, we only need the evaluation of this function at DQ:

fj+k(Q1)

fj+k(Q2)
=

fj(Q1)

fj(Q2)
·
fk(Q1)

fk(Q2)
·

ax+by+c
x+d

∣

∣

∣

(x,y)=Q1

ax+by+c

x+d

∣

∣

∣

(x,y)=Q2

(4)

now describes the value of fj+k at DQ. All we need are the values of fj and fk at DQ,
the points jP and kP . Performing the addition jP + kP gives the point (j + k)P and the
function ax+by+c

x+d
, evaluating at DQ and then multiplying with the values of fj and fk at DQ

yields the desired value of fj+k at DQ along with the point (j + k)P .



P
le
a
se

,
d
o

n
o
t
d
is
tr

ib
u
te

!

4 Michael Nüsken

If now P ∈ E[p] then pP = O. Thus solving Task(p) yields with div(fp) = p[P + R] −
p[R]− [O] + [O] = div(fP ) the desired value

fP (Q1)

fP (Q2)
=

fp(Q1)

fp(Q2)
.

Notice that Task(0) is trivial: D0 = 0, so f0 = 1. Also Task(1) is easy: D0 = [P + R]−
[R] − [P ] + [O], so f1 = x+d

ax+by+c
where ` = ax + by + c is the line through P and R and

v = x+ d is the vertical line through P +R. Thus

f1(Q1)

f1(Q2)
=

ax+by+c

x+d

∣

∣

∣

(x,y)=Q1

ax+by+c

x+d

∣

∣

∣

(x,y)=Q2

Miller’s algorithm now simply follows an addition chain for pP and performs point addi-
tion and point doublings along with multiplying the corresponding values of fj . If we simply
use add and double we obtain

Algorithm 5. Miller’s algorithm.

Input: Points P,R,Q1, Q2 ∈ E, the desired index p.

Output: The value fP (Q1)
fP (Q2)

where div fP = p[P +R]− p[R]− [pP ] + [O].

1. Compute P + R, the line ` = ax+ by + c through P and R, the vertical line v = x+ d

through P +R and let g ←
ax+by+c

x+d |(x,y)=Q1
ax+by+c

x+d |(x,y)=Q2

.

2. Let f ← g, J ← P , j ← 1.
3. Write p = (pr−1, . . . , p1, p0) in base 2.
4. For i = r − 2 down to 0 do 5–15
5. Let ` = ax+ by + c be the tangent at J .
6. S ← 2J .
7. Let v = x+ d be the vertical line through S.
8. Let f ← f2 · `

v

∣

∣

Q1
· v

`

∣

∣

Q2
.

9. J ← S, j ← 2j.
10. If pi = 1 then

11. Let ` = ax+ by + c be the line through J and P .
12. S ← J + P .
13. Let v = x+ d be the vertical line trough S.
14. Let f ← f · g · `

v

∣

∣

Q1
· v

`

∣

∣

Q2
.

15. J ← S, j ← j + 1.
16. Return f .

As a consequence computing a pairing is only a constant factor slower than a scalar multi-
plication by p. (Exercise!)

References

Lawrence C. Washington (2003). Elliptic Curves — Number Theory and Cryptography. Discrete
Mathematics and its Applications. CRC Press, Boca Raton, FL, USA. ISBN 1-58488-365-0.


