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Exercise 10.1 (more RSA). (6 points) (The lecture notes may provide va-

luable hints.)

(i) Small public keys are dangerous – even for single users. Let e = 3 and
assume knowledge of two ciphertexts c1 = m3

1
mod N and c2 = m3
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mod N with the property m2 = m1 + 1. Derive a computable formula
for m1 involving only c1 and c2.

(ii) You have already seen existential forgery for RSA signatures. But it
gets better. RSA is homomorphic, meaning

enc(m1) · enc(m2) = enc(m1 ·m2).

You want to forge the signature for a specific message m and have
access to an oracle which will provide you with valid signatures for two
messages of your choice (of course, different from m). Can you do it?

(iii) An RSA infrastructure should be established for a large group of people.
In order to speed up the key generation and unify further processes, the
management has decided that the same N should be used by everybody
and the keygeneration-algorithm is adjusted accordingly. Still p, q, and
ϕ(N) are properly destroyed after the keygeneration and everybody’s
secret is chosen individually and randomly. Comment on the security
of this system.

Exercise 10.2 (ElGamal signatures). Let us get some hands-on experience
with the ElGamal Signature Scheme. (Use the notation that was fixed in the

tutorial.)

Let p = 228 + 3 and g = 3 a generator of G = Z
×

p = {1, . . . , p − 1}. The
injective encoding function G → Zp−1 = {0, . . . , p− 2}, x 7→ x⋆ is given by

x⋆ =

{

0 for x = p− 1

x else.



Our message m will be the first four letters of your given name. Add an
exclamation mark, if your given name has less than four letters and mind
the capitalization. Look up the 7-bit ASCII encodings for each letter and
concatenate them for the 28-bit number m.

Let us take the role of Alice and let a = 100 be our secret key.

(i) (2 points) Choose a random session key k (of at least three digits) and
generate a signature for your message m.

(ii) (2 points) What is your public key? Use it to verify the signature you
just produced.

Even small errors in the process can compromise the whole system.

(iii) (2 points) Alice sends the signed message

(m,K, σ) = (500, 10 296 631, 248 708 422).

By accident the secret session key k = 787 is revealed. Compute Alice’s
secret key a.

(iv) (2 points) After this experience, Alice changes her secret key and the
public version is now A = 138 309 740. Unfortunately a bug/feature in
the random number generator revealed that the same value for k was
generated twice in a row. This is known for the signed messages

(501, 32 067 479, 51 030 675)

and

(502, 32 067 479, 60 076 072)

Compute Alice’s secret key.

Exercise 10.3 (index calculus for the discrete logarithm problem). We want
to see the index calculus for the discrete logarithm problem in action. We are
interested in the multiplicative group G = Z

×

p with p = 227 and generator
g = 2. We choose as factor base B = {2, 3, 5, 7, 11} with all primes up to the
bound B = 11.

In the preprocessing step we compute the discrete logarithms of all elements
in the factor base B.
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(i) (2 points) Instead of randomly choosing exponents e and testing, whe-
ther geremp factors over B, we have already prepared a list with suitable
exponents for you. Let e take values from {40, 59, 66}, give the factoriza-
tion of geremp over B and the corresponding linear congruence modulo
(p− 1) involving the discrete logarithms of the elements in B.

(ii) (2 points) The discrete logarithm of the generator g = 2 is obviously
1, but even with this information, the three linear relations from (ii)
are not enough to determine the remaining four unknown discrete loga-
rithms. Find one additional linear congruence from an exponent e > 10
yourself.

(iii) (2 points) Assuming that your additional congruence is linearly inde-
pendent from the three previous ones, solve the system of congruences
for the discrete logarithms of the base elements. (If you do this by hand,
note that division by 2 is impossible modulo (p− 1). If you use a com-
puter algebra system, note that those are aware of this problem and
have special commands to solve systems of congruences with a given
modul, e.g. msolve in MAPLE and solve_mod in SAGE.)

Once we have found the discrete logarithms for the elements in the factor
base, we can finally compute the discrete logarithm of any element x in the
group with the following method:

• Choose random exponents e until xgeremp factors over B, say xge ≡
p
β1

1
p
β2

2
· · · pβh

h mod p.

• The corresponding linear relation reads

dlogg x+ e = β1 dlogg p1 + β2 dlogg p2 + · · ·+ βh dlogg ph mod (p− 1)

• Since all the dlogg pi have already been determined in the preprocessing
step, you can solve this equation modulo (p− 1) for dlogg x.

(iv) (2 points) Apply this procedure to compute dlog
2
224 in Z

×

227
.
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