Exercise 3.1. (7 points) Design a protocol to

(i) agree over the phone on a “random” bit,

(ii) play rock-paper-scissors over a chat-channel.

Comment on correctness and completeness.

Exercise 3.2 (DAC vs. MAC). (7 points) How can you transfer the information of the control matrix in a DAC into the partially-ordered set of a MAC. How can you go back? What is the blow-up in both directions?

Exercise 3.3 (The finite field \mathbb{F}_{256}). (6 points) The finite field of 256 elements plays a central role in the description of AES. Its elements are polynomials of degree less than 8 with coefficients in the two-element field \mathbb{F}_2. Each element is of course given by eight bits, which we can also read as a hexadecimal written byte, so that, for example, $x^7 + x^4 + 1$ is given by (10010001), which can be read as 91. Addition and multiplication in the field are the usual addition and multiplication of polynomials, apart from the rule, that the result is reduced modulo the polynomial $x^8 + x^4 + x^3 + x + 1$. Carry out the following computations and document your intermediate steps:

(i) Add $x^5 + x + 1$ and $x^7 + x^6 + 1$.

(ii) Add 23 and C1.

(iii) Multiply $x^5 + x + 1$ and $x^7 + x^6 + 1$.

(iv) Multiply 23 and C1.

(v) Calculate the inverse of $x^4 + x^3 + x^2 + x + 1$.

(vi) Calculate the inverse of 23.

Exercise 3.4 (mathematical bonus). (+2 points) Why is there no field with six elements?