Cryptography

Priv.-Doz. Dr. Adrian Spalka, Konstantin Ziegler

4 Assignment
(Due: Thursday, 25 November 2010, 12:00)

Exercise 4.1 (The finite ring \(\mathbb{F}_{256}[y]/\langle y^4 + 1 \rangle \), MixColumns). (10 points)

The finite ring \(S = \mathbb{F}_{256}[y]/\langle y^4 + 1 \rangle \) consists of polynomials of degree less than 4 in the variable \(y \) with coefficients in the field \(\mathbb{F}_{256} \).

(i) (2 points) The ring \(S \) is not a field. In particular, there are nonzero elements in \(S \) without a multiplicative inverse. Give an example and explain how you could check that property.

(ii) (3 points) The output \(b_3, b_2, b_1 \) and \(b_0 \) of the MixColumns-step for a column with entries \(a_3, a_2, a_1 \) and \(a_0 \) is determined by the product

\[
b_3 y^3 + b_2 y^2 + b_1 y + b_0 = (02 + 01y + 01y^2 + 03y^3) \cdot (a_3 y^3 + a_2 y^2 + a_1 y + a_0).
\]

Expand the product over \(\mathbb{F}_{256}[y] \), reduce it modulo \(y^4 + 1 \) and collect the terms with equal powers of \(y \) to obtain equations for \(b_3, b_2, b_1 \) and \(b_0 \). Find a \(4 \times 4 \)-matrix \(M \) with entries from \(\mathbb{F}_{256} \) to express this multiplication as a matrix-vector product

\[
\begin{pmatrix}
 b_0 \\
 b_1 \\
 b_2 \\
 b_3
\end{pmatrix} = M \cdot
\begin{pmatrix}
 a_0 \\
 a_1 \\
 a_2 \\
 a_3
\end{pmatrix}.
\]

(iii) Find the inverse of \(02 + 01y + 01y^2 + 03y^3 \) in \(S \).

(iv) Let us examine the consequence of choosing a different ring

\(S' = \mathbb{F}_{256}[y]/\langle y^4 \rangle \).

The multiplication with the polynomial \(02 + 01y + 01y^2 + 03y^3 \) is now represented by the matrix

\[
M' = \begin{pmatrix}
 02 & 00 & 00 & 00 \\
 01 & 02 & 00 & 00 \\
 01 & 01 & 02 & 00 \\
 03 & 01 & 01 & 02
\end{pmatrix}
\]
Why would this operation hardly deserve the name *MixColumns*? Elaborate with an example.

Exercise 4.2 (AES). (10 points)

(i) Write down an algorithm to decrypt the 128-bit output state of a single round of AES-128. Be as specific as possible and comment on the cost (space and time) of each step. (For example, employ the result of 4.1 (iii).)

(ii) One of the requirements in the AES-competition was performance. Find benchmarks for *Rijndael* and two other contestants and compare them. (Be careful about the sources you choose.)

(iii) Give examples of software that uses AES.

Exercise 4.3 (mathematical bonus). (+2 points)