Cryptography

Priv.-Doz. Dr. Adrian Spalka, Konstantin Ziegler

4 Assignment

(Due: Thursday, 25 November 2010, 12^{00})
Exercise 4.1 (The finite ring $\mathbb{F}_{256}[y] /\left\langle y^{4}+1\right\rangle$, MixColumns). (10 points) The finite ring $S=\mathbb{F}_{2^{8}}[y] /\left\langle y^{4}+1\right\rangle$ consists of polynomials of degree less than 4 in the variable y with coefficients in the field \mathbb{F}_{256}.
(i) (2 points) The ring S is not a field. In particular, there are nonzero elements in S without a multiplicative inverse. Give an example and explain how you could check that property.
(ii) (3 points) The output b_{3}, b_{2}, b_{1} and b_{0} of the MixColumns-step for a column with entries a_{3}, a_{2}, a_{1} and a_{0} is determined by the product
$b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0}=\left(02+01 y+01 y^{2}+03 y^{3}\right) \cdot\left(a_{3} y^{3}+a_{2} y^{2}+a_{1} y+a_{0}\right)$.
Expand the product over $\mathbb{F}_{256}[y]$, reduce it modulo $y^{4}+1$ and collect the terms with equal powers of y to obtain equations for b_{3}, b_{2}, b_{1} and b_{0}. Find a 4×4-matrix \mathcal{M} with entries from \mathbb{F}_{256} to express this multiplication as a matrix-vector product

$$
\left(\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\mathcal{M} \cdot\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) .
$$

(iii) Find the inverse of $02+01 y+01 y^{2}+03 y^{3}$ in S.
(iv) Let us examine the consequence of choosing a different ring

$$
S^{\prime}=\mathbb{F}_{256}[y] /\left\langle y^{4}\right\rangle .
$$

The multiplication with the polynomial $02+01 y+01 y^{2}+03 y^{3}$ is now represented by the matrix

$$
\mathcal{M}^{\prime}=\left(\begin{array}{llll}
02 & 00 & 00 & 00 \\
01 & 02 & 00 & 00 \\
01 & 01 & 02 & 00 \\
03 & 01 & 01 & 02
\end{array}\right)
$$

Why would this operation hardly deserve the name MixColumns? Elaborate with an example.

Exercise 4.2 (AES). (10 points)
(i) Write down an algorithm to decrypt the 128-bit output state of a single round of AES-128. Be as specific as possible and comment on the cost (space and time) of each step. (For example, employ the result of 4.1 (iii).)
(ii) One of the requirements in the AES-competition was performance. Find benchmarks for Rijndael and two other contestants and compare them. (Be careful about the sources you choose.)
(iii) Give examples of software that uses AES.

Exercise 4.3 (mathematical bonus). (+2 points)

