Cryptography

PRIV.-DOZ. DR. ADRIAN SPALKA, KONSTANTIN ZIEGLER

6 Assignment

(Due: Monday, 13 December 2010, 10⁰⁰)

Exercise 6.1 (Chinese Remainder Theorem). (8 points) To investigate the structure of rings $(\mathbb{Z}_N, +, \cdot)$ with composite N it is useful to pick a suitable factorization N = ab and look at the set $\mathbb{Z}_a \times \mathbb{Z}_b$ consisting of all pairs (x, y) with $x \in \mathbb{Z}_a$ and $y \in \mathbb{Z}_b$. We define addition and multiplication on $\mathbb{Z}_a \times \mathbb{Z}_b$ componentwise.

(i) Consider $20 = 5 \cdot 4$ and look at the map $\pi_1 : \mathbb{Z}_{20} \to \mathbb{Z}_4$ which maps an integer $0, 1, \ldots, 19 \in \mathbb{Z}_{20}$ to its remainder modulo 4. Prove that for any two elements $a, b \in \mathbb{Z}_{20}$ the following holds:

$$\pi_1(a+b) = \pi_1(a) + \pi_1(b)$$
 and $\pi_1(a \cdot b) = \pi_1(a) \cdot \pi_1(b)$. (†)

Fill out a table with rows indexed by \mathbb{Z}_4 and columns indexed by \mathbb{Z}_5 . Note: a map having the properties \dagger is called a *ring homomorphism*.

- (ii) Pick two elements $x, y \in \mathbb{Z}_{20}$ (to make it interesting: the sum of the representing integers shall be larger than 20). First, add them in \mathbb{Z}_{20} and then map to $\mathbb{Z}_5 \times \mathbb{Z}_4$. Second, map both to $\mathbb{Z}_5 \times \mathbb{Z}_4$ and add afterwards. What do you observe?
- (iii) Pick two elements $x, y \in \mathbb{Z}_{20}$ (to make it interesting: the product of the representing integers shall be larger than 20). First, multiply them in \mathbb{Z}_{20} and then map to $\mathbb{Z}_5 \times \mathbb{Z}_4$. Second, map both to $\mathbb{Z}_5 \times \mathbb{Z}_4$ and multiply afterwards. What do you observe?
- (iv) Mark all the invertible elements in \mathbb{Z}_5 , \mathbb{Z}_4 , and \mathbb{Z}_{20} . What is their relationship?
- (v) Revisit the previous four questions under the factorization $20 = 2 \cdot 10$.

Now consider two relatively prime positive integers $a, b \in \mathbb{Z}_{\geq 2}$.

- (i) Let x be any integer and suppose $x \pmod{ab}$ is invertible. Prove that $x \pmod{a}$ and $x \pmod{b}$ are also invertible.
- (ii) Assume that an integer y is invertible modulo a and modulo b. Prove that y is then invertible modulo ab.
- (iii) Conclude that there is a bijection between \mathbb{Z}_{ab}^{\times} and $\mathbb{Z}_{a}^{\times} \times \mathbb{Z}_{b}^{\times}$.

For a nice story where CRT saved US\$ 150,000 and 256G of RAM see the section "(Not) Buying a Really Big Computer" in DAVID VOGAN. The Character Table for E_8 . Notices of the American Mathematical Society, $\mathbf{54}(9):1022-1034,2007$. URL http://www.ams.org/notices/200709/tx070901122p.pdf.

Exercise 6.2 (Orders, generators and the Diffie-Hellman key exchange). (10 points)

Let G be a finite multiplicative commutative group and $g \in G$ an element. We define the subgroup generated by g as

$$\langle g \rangle = \{1, g, g^2, g^3, \dots \}$$

and the order of g as $\#\langle g \rangle$.

(i) Prove that $\langle g \rangle$ is a group.

An element $g \in G$ that generates all of G, i.e. $\langle g \rangle = G$, is called a generator of G.

(i) Does every group have a generator?

ALICE and BOB want to agree on a common key over an insecure channel. To do so, they want to perform a Diffie-Hellman key exchange in the group $\mathbb{Z}_{20443}^{\times}$. Please, help them:

(i) Find a generator for the group $\mathbb{Z}_{20443}^{\times}$. You can use the following theorem:

Theorem 6.3. An element $g \in \mathbb{Z}_p^{\times}$ is a generator of \mathbb{Z}_p^{\times} if and only if

$$g^{(p-1)/t} \neq 1 \pmod{p}$$

for all prime divisors t of p-1.

- (ii) Next, ALICE chooses as her secret key a=257 and BoB chooses ashis secret key b=1280. Both have to compute their public keys $A=g^a$ and $B=g^b$, respectively. Compute both using as few multiplications and squarings as possible. (Hint: Repeated Squaring.)
- (iii) The values of A and B are sent over the insecure channel. ALICE computes as common key $k_{\text{ALICE}} = B^a$, while BOB computes $k_{\text{BOB}} = A^b$. Prove that $k_{\text{ALICE}} = k_{\text{BOB}}$.
- (iv) Formulate the problem, that a *passive* attacker is facing. (What does she know and what does she want to compute?)
- (v) Assume an *active* attacker in the middle of the communication channel. He can read and modify any messages sent over the channel. How can he trick ALICE and BOB into establishing a common key with him?