Exercise 9.1 (small public exponent RSA). (6 points) In a public domain
the exponent $e = 3$ is used as public exponent, thus every user chooses a
public modulus N such that $\gcd(\varphi(N), 3) = 1$ and computes his respective
secret exponent d such that $3 \cdot d = 1 \mod \varphi(N)$. Suppose that the users $A,$
B, C have the following public moduli:

$$N_1 = 5000746010773, \quad N_2 = 5000692010527, \quad N_3 = 5000296004107.$$

(i) ALICE sends a message m to A, B, C by encrypting: $m_i = m^3 \mod N_i$.
An eavesdropper EVE intercepts the following values:

$$m_1 = 1549725913504, \quad m_2 = 2886199297672, \quad m_3 = 2972130153144.$$

Show that EVE can recover the value of m without factoring N_i and
compute this value. (Hint: Use the Chinese Remainder Theorem.)

(ii) Generalize the method used by EVE above for a general public exponent
e. How many messages should EVE intercept in order to recover the
clear text message?

(iii) For N_1, the information $\varphi(N_1) = 5000740010560$ has leaked. Use this
to factor N_1 and find the secret key of A. Do not use brute force.

Exercise 9.2 (a discrete log hash function). (6 points) A prime number q so
that $p = 2q + 1$ is also prime, is called a Sophie Germain prime. We choose
$q = 7541$ and $p = 2 \cdot 7541 + 1$ both prime and want to define a hash function
on the set $\mathbb{Z}_q \times \mathbb{Z}_q$.

(i) Let $\alpha = 604$ and $\beta = 3791$. Prove that $\text{ord}(\alpha) = \text{ord}(\beta) = q$.

The elements α and β actually generate the same subgroup of \mathbb{Z}_p^*, i.e. $\langle \alpha \rangle = \langle \beta \rangle$. Call this subgroup G.
(ii) Now, we can define a hash function
\[h : \mathbb{Z}_q \times \mathbb{Z}_q \to G, (x_1, x_2) \mapsto \alpha^{x_1} \beta^{x_2}. \]
Compute \(h(7431, 5564) \) and \(h(1459, 954) \) and compare them.

(iii) In (ii) you found a collision for the hash function \(h \). This enables you to compute the discrete logarithm \(\text{dlog}_{\alpha} \beta \). Do it.

(iv) Conversely, use your knowledge of \(\text{dlog}_{\alpha} \beta \) to compute another collision for \(h \).

Exercise 9.3 (correctness of RSA). (4+2 points) It is a common requirement for an encryption scheme to guarantee that the decryption of an encrypted text yields the original message. In short:
\[\text{dec(enc(m))} = m. \]
This is property is called correctness.

(i) Use Euler’s Theorem to prove the correctness of RSA for messages \(m \in \mathbb{Z}_N^\times \).

(ii) RSA also works correctly for messages \(m \in \mathbb{Z}_N \setminus \mathbb{Z}_N^\times \). Prove that, too. Hint: Use the Chinese Remainder Theorem to transform a congruence modulo \(N \) into a system of two congruences modulo \(p \) and \(q \).