Cryptography

PRIV.-DOZ. DR. ADRIAN SPALKA, KONSTANTIN ZIEGLER

Assignment 9: RSA and hashing long messages

Due: Monday, 24 January 2011, 10⁰⁰

Exercise 9.1 (small public exponent RSA). (6 points) In a public domain the exponent e = 3 is used as public exponent, thus every user chooses a public modulus N such that $gcd(\varphi(N),3) = 1$ and computes his respective secret exponent d such that $3 \cdot d = 1 \mod \varphi(N)$. Suppose that the users A, B, C have the following public moduli:

 $N_1 = 5000746010773, N_2 = 5000692010527, N_3 = 5000296004107.$

(i) ALICE sends a message m to A, B, C by encrypting: $m_i = m^3 \mod N_i$. An eavesdropper EVE intercepts the following values:

$$m_1 = 1549725913504, \ m_2 = 2886199297672, \ m_3 = 2972130153144.$$

Show that EVE can recover the value of m without factoring N_i and compute this value. (Hint: Use the Chinese Remainder Theorem.)

- (ii) Generalize the method used by EVE above for a general public exponent e. How many messages should EVE intercept in order to recover the clear text message?
- (iii) For N_1 , the information $\varphi(N_1) = 5000740010560$ has leaked. Use this to factor N_1 and find the secret key of A. Do not use brute force.

Exercise 9.2 (a discrete log hash function). (6 points) A prime number q so that p = 2q + 1 is also prime, is called a *Sophie Germain prime*. We choose q = 7541 and $p = 2 \cdot 7541 + 1$ both prime and want to define a hash function on the set $\mathbb{Z}_q \times \mathbb{Z}_q$.

(i) Let $\alpha = 604$ and $\beta = 3791$. Prove that $ord(\alpha) = ord(\beta) = q$.

The elements α and β actually generate the same subgroup of \mathbb{Z}_p^{\times} , i.e. $\langle \alpha \rangle = \langle \beta \rangle$. Call this subgroup G.

(ii) Now, we can define a hash function

$$h: \mathbb{Z}_q \times \mathbb{Z}_q \to G, (x_1, x_2) \mapsto \alpha^{x_1} \beta^{x_2}.$$

Compute h(7431, 5564) and h(1459, 954) and compare them.

- (iii) In (ii) you found a collision for the hash function h. This enables you to compute the discrete logarithm $\operatorname{dlog}_{\alpha} \beta$. Do it.
- (iv) Conversely, use your knowledge of $\operatorname{dlog}_{\alpha} \beta$ to compute another collision for h.

Exercise 9.3 (correctness of RSA). (4+2 points) It is a common requirement for an encryption scheme to guarantee that the decryption of an encrypted text yields the original message. In short:

$$dec(enc(m)) = m.$$

This is property is called *correctness*.

- (i) Use Euler's Theorem to prove the correctness of RSA for messages $m \in \mathbb{Z}_N^{\times}$.
- (ii) RSA also works correctly for messages $m \in \mathbb{Z}_N \setminus \mathbb{Z}_N^{\times}$. Prove that, too. Hint: Use the Chinese Remainder Theorem to transform a congruence modulo N into a system of two congruences modulo p and q.