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Organization

◮ Lecture: Thu, 12:15–13:45, 14:00–14:45, b-it bitmax

◮ Tutorial: Mon, 14:00–15:30, b-it bitmax
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1. Basics of computer security
1.1 Preliminary considerations
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Threats due to connection to the internet

◮ Outsourcing of internal processes,

◮ launch of e-commerce,

◮ increasing number of entry points,

◮ numerous external attacks.

Practical damage:

◮ Eavesdropping (theft) and misuse of information,

◮ modification of financial documents,

◮ execution of harmful transactions,

◮ violation of patents and copyrights,

◮ harm to the public image of a company.

=⇒ Without security electronic/mobile-commerce becomes
unprofitable.
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Applications with need for security

Traditional applications (closed environment):

◮ operating systems,

◮ data bases.

Modern applications (open environments =⇒ internet):

◮ mutual authentication,

◮ exchange and storage of documents and email,

◮ virtual private networks,

◮ trade-/bank-/stock-transactions on the internet
(www-sessions): e/m-commerce,

◮ introduction of electronic medical records,

◮ single sign-on.
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Risk analysis

Points of attack:

◮ the physical media: physical properties,

◮ the software: central subject of computer security,

◮ the user: social engineering.

Main problem: Design of the internet.

◮ Preferential: interoperability.

◮ Neglected: security.
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Position of the attacker

1. Outsider: foreign party in the net.
◮ Attacker eavesdrops/manipulates data traffic in the net.

2. Insider: corrupted user as involved party.
◮ User misuses his rights on purpose.

3. Hacker: foreign party directly active on the machine of an
involved party.

◮ Attacker sneaks into the role of the user.

4. Malicious software (virus, worm, trojan, etc.): foreign party
indirectly active on the machine of an involved party.

◮ Program uses the rights of the user without his
knowledge/consent.
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Threat potential: the reality

Military sector (1996):
◮ more than 500.000 break-in attempts at the US DoD

◮ 10% by red teams, thereof 65% successful and thereof 63%
undetected

◮ implications also for public infrastructure.

Public sector: poll among US-enterprises (2001)
◮ 62% successfully attacked, thereof 55% by an unauthorized

insider,
◮ 51% suffered losses, but only 31% thereof could specify their

loss,
◮ 57% of the attacks over the internet.

Targets and means of attack:
◮ denial of service: 32%, data sabotage: 14%, fraud: 14%,
◮ damages by malicious software: more than USD 15 billion

(USA, 1999),
◮ more than 40.000 webpages with hacker tools,
◮ hacker tools today: automated, usable by non-experts.

February 10, 2011 8 / 257



1.2 A systematic approach
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Goals of security

◮ Protection of the value that the data in an information system
has.

◮ Is any data without value? BVerfG says “No”:
◮ Sensitivity depends on the context.
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Methods of security

1. Security policy: programmatic goal approach.
◮ Informal determination of the value and the sensitivity of the

data by declaration of a security level.

2. Security strategy: translation of the security policy into the
context of an information system model.

◮ Declarative specification in the security model.
◮ Detailed administrative regulations.

3. Security tactic: operational realization.
◮ Practical application of a security model in a

computer/network.
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Ways to evaluate the values in a security policy

◮ Mandatory: determines all values and their protection
requirements bindingly.

◮ Discretionary: determines at who’s discretion the
determination of values and their protection requirements is.
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Factors for evaluation

◮ Authenticity
◮ Protection from wrong attribution of actions/data,
◮ identification: determination of the identity of a user,
◮ authentication: proof of the claimed identity of a user.

Example: Nobody is allowed to sign on behalf of the boss.

◮ Integrity
◮ Protection from unauthorized modification of data,
◮ detection of unauthorized modification of data.

Example: No employee is allowed to change his salary.
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Factors for evaluation (continued)

◮ Availability:
◮ Protection from delay of access to data,
◮ providing means for legitimate users to perform operations

according to the rules,
◮ basis of any communication.

Example: A system failure may not exceed 4 hours.

◮ Confidentiality:
◮ Protection from disclosure of data to unauthorized people,
◮ concealing and hiding the intended meaning of data from

unauthorized people.

Example: Intentions to buy may not be disclosed before the
date of acquisition.
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Determination of values: examples

Area Values Factors

railroad traffic collision freeness of trains integrity

banks protection from fraud integrity

airport tower life of passengers availability/integrity

military success of operations confidentiality

medicine health of patients integrity/ availability/

confidentiality
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Classification of protection measures for conservation of
values

1. Prevention: should avoid loss of value.
Example: access control and cryptography.

2. Recovery: should recover value afterwards.
Example: records and protocols.

3. Limitation of damage: should limit the loss.
Example: burglar alarms and intrusion detection systems.

Specific countermeasures: depending on the position of the
attacker.
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Securing the accessibility of resources

in case of overload/monopolization =⇒ restriction of range of use

◮ static/dynamic (workload dependent)/priority-based
assignment of resources on individual basis
=⇒ only applicable, if user identification possible =⇒ not
applicable with anonymous multi-user access (internet!)

in case of partial breakdown =⇒ redundancy

◮ synchronized: RAIDs, multipoint-to-multipoint connections in
the net, tandem processors, etc.

◮ time-delayed: periodic archiving, spare parts, etc.

in case of total breakdown =⇒ external physical measures

◮ protection against power blackout, fire, theft, etc.
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securing accessibility on the internet

a possible strategy for web-server: request monitoring/session
monitoring

1. limit maximal number of requests/sessions

2. monitor number of requests/sessions continuously
◮ in case of overload: deny requests/sessions with feedback

=⇒ ongoing sessions continue unhampered

3. limit maximal increase of requests/sessions

4. monitor increase of numbers of requests/sessions continously
◮ in case of overload: ignore requests/sessions without feedback

=⇒ ongoing sessions continue with delay
=⇒ hones new users also receive no reply
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securing integrity

◮ hardware-integrity: modifications of the machine
rounds of inspection

◮ compliance with access routes to data: application-specific
access
access-control of operation system

◮ sanctity of data paths: modification of data stream
cryptographic protocols

◮ user-/program-corruption: misuse of rights
restriction of competences, distribution of powers

◮ semantic integrity: invalid data integrity requirements (mainly
in data bases)
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securing confidentiality

general problem: precise definition of confidentiality
Question: Do you have an account . . .

◮ . . . at the Sparkasse? (content is confidential)
◮ . . . at the Castle Bank of Nassau? (existence is confidential)

Answers:
◮ Yes.
◮ Maybe./I don’t tell./No comment.
◮ No.
◮ I don’t understand the question.

Approaches to protect confidentiality:
◮ access can be controlled: access restriction

operating systems and closed nets
◮ access can not be controlled: encryption

open nets
◮ Users knows fragments of the environment:

misinformation/uncertainty
(statistical) databases
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access control

◮ identification: specification of an individual identification
Examples: user-/role-/node-name/id

◮ authentication: confirmation of correctness of identification by:

◮ personal/system-inherent knowledge: e.g. password
advantages: arbitrarily reusable, indestructible
disadvantages: forgettable, spy-able (written down)

◮ personal possession: e.g. smartcard
advantages: arbitrarily reusable, not spy-able
disadvantages: broken, duplicated, forgotten, stolen

◮ personal characteristic (biometry): e.g. finger print, signature,
etc.
advantage: “unforgettable”
disadvantage: not accepted, unreliable, theft/replication of
biometric data, irrevocable, legal concerns
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allocation of rights

basis of allocation of rights:
trustworthiness of the user or confidentiality/integrity/accessibility
=⇒ considered: explicit assumptions on the user’s behavior
=⇒ often not considered: implicit assumptions on the program’s
behavior
Where has malware been considered?
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excursion

assumption of modern concepts: resources have to be protected
from users

◮ problem: the legislation requires protection of the user from
certain data

◮ Example: content on the internet which is
unconstitutional/inappropriate for minors

◮ solutions for schools with internet access
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preemptive danger elimination

◮ verification: verify the trustworthiness of programs, i.e. that a
program:

◮ does not contain undocumented functionality (security)
◮ does have the assured functionality (safety)

◮ global classification of programs as
◮ trustworthy: part of the trusted computing base (TCB):

◮ Is demonstrably trustworthy, i.e. verifiable.
◮ Can not be modified by an unauthorized party.
◮ Can not be by-passed.
◮ Controls all access attempts and decides on their

trustworthiness.

◮ possibly un-trustworthy: all the rest.

◮ GAC: design of a new access control model!

◮ Restriction of distribution of rights of all kind.

◮ Structuring of group environments.
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Recovery

◮ traceability of actions

◮ attribution to initiator and executor
logging and subsequent evaluation
BUT: legal situation unclear.
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damage limitation

1. surveillance of running activities

2. alerting on supposed breaches, i.e. on admissible but abnormal
activity patterns
intrusion detectors
=⇒ privacy
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2. Cryptographic systems
2.1 Introduction
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Tasks of cryptography

◮ realization of trustworthy computer-based communication- and
information-systems, which use a vulnerable medium or storage

◮ reliable transactions in public networks between careful parties
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Players in a cryptographic system

◮ desired parties: two or more senders and receivers (Alice and
Bob)

◮ undesired parties:
◮ eavesdropper (Eve)
◮ malicious attacker (Mallory)

February 10, 2011 29 / 257



Assumptions on the desired parties

◮ Alice and Bob may cheat on each other, i.e. there is mutual
mistrust

◮ The computations performed by and the messages sent by
Alice and Bob are intended as such, i.e. the terminal nodes are
trustworthy.
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The situation

Alice and Bob exchange messages over an insecure channel.

Sender

Alice

Attacker

Sender

Bob
insecure channel

unprotected stream of data

secure channel

protected stream of data
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The problems

◮ Attacker has unauthorized access to the data on the insecure
channel. He may:

◮ eavesdrop (confidentiality): hide meaning (encryption)
◮ modify (integrity): detect manipulations (digital signatures)
◮ discard (accessibility): bad luck

◮ Alice and Bob cheat on each other: detect fraud (protocols)
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protecting confidentiality: use of a cryptographic system (cs)

1. Alice uses an encryption function enc,
which maps a message (string) m from the message space M
to a message (string) c from the ciphertext space C:

enc :M→ C,m 7→ c.

2. Alice computes c = enc(m) and sends c to Bob.

3. Bob uses a decryption function dec with the property that
dec(c) = m for all c = enc(m), i.e.

dec : C →M,dec |enc(M) = enc−1 .

In most cases,M, C ⊆ Σ∗, where Σ is a finite set of symbols
(alphabet).
Examples: Σ = {0, 1} or Σ = {A, . . . , Z}
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basic properties of enc and dec

◮ determining m from c is practically infeasible.

◮ enc and dec are fast and easy to use.
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possibilities

◮ Keeping enc and dec secret.
Problem: Many people involved until maturity.

◮ Kerckhoff’s Principle: enc and dec are public.
Consequence: extension of enc and dec by a key parameter:

enc(m,k1, . . . , kn) and dec(c, k̃1, . . . , k̃ℓ)

and secrecy of the keys.
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Scenarios of cryptanalysis

Known are:

◮ only c

◮ some pairs (m, c)

◮ also enc

Relevant for the cryptanalysis

◮ If the message m is redundant with respect to the transmitted
information, then for the recovery of m from c an
incomplete/erroneous reconstruction may be sufficient.
For natural languages this is always the case.
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2.2 Encryption schemes
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2.2.1 steganography

The art of “concealed writing”. Hiding the existence of secrets.
plays on words: initial letters of words, parts of the text, etc.

◮ Examples (Richelieu):
◮ encryption: message-text + garbage-in-between-text according

to a template
◮ decryption: template on the ciphertext

laborious encryption.

Tampering of graphic files: BMP/GIF/JPG-format, etc.
Example

◮ size: 2048 x 3072 pixels

◮ 24 bit RGB-data per pixel

◮ The least significant bit of the RGB-data can (mostly) be
manipulated without effect on the image quality.

◮ This enables the hiding of 2.3 MB of data in one image.
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2.2.2 symmetric encryption

goal: classical protection of confidentiality from eavesdropping.
method: common secret key k for sender and receiver.

◮ encryption: enc(m,k) = c

◮ decryption: dec(c, k) = m

demand: decryption of c is practically only possible with k.
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2.2.2 symmetric encryption (continued)

disadvantages:

◮ large number of keys and therefore expensive key-management

◮ useless for authenticity

advantages:

◮ confidentiality in closed (maybe large) user base

◮ easily implementable in hardware and fast (100 MB/s and
more)
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symmetric block ciphers

◮ approach: create confusion, e.g. DES (56 bit key, old) and
AES (128 to 256 bit key, current)

◮ computation: primitive operations, e.g. bit-rotation and
bit-permutation
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symmetric stream ciphers

◮ encryption of single units (bits/bytes)

◮ enc can modify itself (enc may have states)

◮ less complex than block ciphers and therefore faster

◮ adequate/necessary if no buffer is available/permitted

◮ little/no failure propagation (good for noisy channels)

◮ only few public algorithms
◮ SEAL (software-optimized encryption algorithm, 1993):

customized for 32-bit processors
◮ RC4: not public
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symmetric stream ciphers (continued)

general course of action

1. common for Alice and Bob:
◮ random number generator Z
◮ secret key k as start value for Z

2. encryption of m = m1 . . . mn

◮ Alice starts Z with k
◮ bits of m are added modulo 2 to the bits zi output by Z, i.e.

XOR
ci = mi + zi mod 2

3. decryption of c = c1c2 . . .
◮ Bob starts with Z with k

mi = ci + zi mod 2.
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2.2.3 Asymmetric cryptography (public key)

Approach: difficult mathematical problems (one-way trapdoor
functions):

◮ Prime factorization of natural numbers (RSA),

◮ computation of discrete logarithms in finite groups (DL),

◮ computation of quadratic residues in finite groups (QR),

◮ “division of points” on elliptic curves over finite fields (EC).

Computation: complex mathematical operations
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2.2.3 Asymmetric cryptography (public key) (continued)

procedure: every participant P gets two keys pk and sk:

◮ public key pk for a public “telephone book”

◮ private key sk for his own vault

advantages:

◮ confidentiality, integrity and authenticity in open networks

◮ building block for communication protocols

◮ low number of keys

disadvantages:

◮ slow

◮ authenticity of public keys has to be guaranteed.

vulnerability:

◮ complexity is unknown, i.e. prone to dramatic developments.
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Asymmetric basis procedure

Participants: P1 = (sk1, pk1) and P2 = (sk2, pk2)

◮ telephone book = (pk1, pk2)

Confidentiality: P1 sends secret message m to P2

◮ encryption by P1: enc(m, pk2) = c

◮ decryption by P2: dec(c, sk2) = m

Requirement: In practice, c can only be deciphered with sk2.
Integrity and authenticity: P1 sends signed message m to P2

◮ signing by P1: sig-gen(m, sk1) = s

◮ sent: (m, s) – received: (m′, s′)

◮ verification by P2: sig-ver(s′, pk1) = m′′

m′′ = m′ =⇒ m = m′ and s = s′

Requirement: In practice, s for m can only be generated with sk1.
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cryptographic protocols

◮ agreement of session keys

◮ finding duplicate messages

◮ (un-)deniability of sending or receiving of messages

◮ general procedures:
◮ contract signing
◮ random decisions

reliable transactions in closed private networks:

◮ so far well solved with scs
◮ hierarchy of keys
◮ trustworthy special hardware
◮ at least some trustworthy parties
◮ users: banks, business, public administration, governments,

military, etc.
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division of tasks between scs and acs for encryption

◮ sks are very fast and for medium and large amounts of data
indispensable

◮ acs are very slow and only for small amounts of data useful

=⇒ hybrid systems:

◮ scs encrypts the data

◮ acs encrypts the key (also: session key) of the scs
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application of crypto systems to signatures (authenticity and
integrity)

◮ infeasible with scs

◮ for free with acs
=⇒ In practice, particularly efficient with EC-acs
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3. Random numbers
3.1 Introduction
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Fair coin-flipping protocol

Alice and Bob choose a one-way function f .

1. Alice chooses x, computes f(x) and sends f(x) to Bob.

2. Bob guesses: x even or odd and sends his guess to Alice.

3. Alice answers true or false to Bob.

4. Alice sends x to Bob.

5. Bob computes f(x) and verifies that this value is equal to the
value in 1.
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Extension of the protocol and applications

◮ Alice chooses one bit at a time and generates a bit vector =>
Encoding of sets.

◮ Games that require randomness:
◮ Card games,
◮ board games.

◮ Consumers of random numbers:
◮ Simulations,
◮ games,
◮ cryptography.
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Phrasing the requirements

◮ Choose one element at random from a set of n numbers.

◮ Generate a random sequence of length m, which consists of
elements from a finite set, e.g. a random bit string of length
1024.

◮ Clarifications:
◮ All numbers and all sequences consisting of these numbers

already exist - since a long time.
◮ Not the numbers are random, but the process how they are

chosen.
◮ A random number is a number that is chosen at random.
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3. Random numbers
3.1 Introduction
3.1.1 Approaches to random number generation
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Hardware based

◮ These approaches make use of presumed randomness in
physical processes.

◮ Examples:
◮ Time in between emission of particles in radioactive decay,
◮ thermal noise of semi conductors,
◮ read access time of hard disks,
◮ sound and image sources.
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Software based

◮ These approaches make use of presumed randomness in events
occuring during runtime of a computer.

◮ Examples:
◮ System clock,
◮ buffer content,
◮ state or load of system resources.
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General suggestions

◮ Use several sources as input.

◮ Deskewing (post processing) of the output in order to remove
correlation (next bit) or trend (single bit).
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3.2 Attempts to define randomness
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Shannon (1948)

◮ “Father of Information Theory”.

◮ Shannon analyses distributions, that are not ideally random.

◮ He defines randomness as extremum.

◮ A set is perfectly random, if its information content (entropy)
is maximal.

◮ It does not contain redundancy.
◮ Its elements are distributed uniformly.

◮ Conclusion: It is not possible to generate random sequences
from short random initial sequences (seeds).
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Kolmogorov (1965)

◮ Computability theory.

◮ The complexity of sets is defined via the the shortest program
that generates this set.

◮ A perfectly random set is an extremum.

◮ But:
◮ Kolmogorov complexity is not computable.
◮ It is impossible to generate sets with high Kolmogorov

complexity from short random initial values (seeds).
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Binary symmetric source - BSS

◮ Ideal source of randomness.

◮ Definition 3.1:
◮ A BSS is a black box, which emits one bit at a time.
◮ All outputs occur with the same probability.
◮ For each output bit the probability that it is 1 or 0 is always 1

2 .
◮ A given sequence of n bits is always generated with probability

1
2n .

◮ This property of the BSS is called uniform distribution.

Problem: In reality - there exists no ideal source of randomness.
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Blum/Goldwasser/Micali/Yao (1982/1984)

◮ Assumption: Applications that depend on sequences of
random numbers, keep their properties to a large extend when
sequences of pseudo random numbers are used.

◮ Approach: Two objects are called identical, if there exists no
efficient algorithm that can distinguish them.

◮ Result: Randomness is no inherent property of a sequence,
but perception of an observer relative to his computing power.
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Pseudo random sequences

Definition 3.2

A sequence is pseudo random, if no algorithm running in polynomial
time can distinguish this sequence from a uniform distributed
sequence.
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Pseudo random number generator - PRNG

Definition 3.3

◮ Let ℓ : N→ N, s.t. ∀n : ℓ(n) > n.

◮ An efficient (deterministic) function f is a PRNG with
streching function ℓ, if for every random n-bit input x,

◮ the output f(x) is of length ℓ(n) and
◮ an efficient algorithm cannot distinguish f(x) from a random

bit sequence of of length ℓ(n).
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Equivalent Definitions

◮ f is a PRNG if statistical tests running in polynomial time,
cannot distinguish the output of f from a sequence of
uniformly distributed bits, with probability more than 1

2 .

◮ Next-bit test: f is a PRNG, if there exists no algorithm
running in polynomial time, which predicts the next output bit
with probability higher than 1

2 .
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Requirements for PRNGs

◮ Benefit: A PRNG generates efficient, long, pseudo random
sequences from short random seeds.

◮ Requiremnts for PRNGs:

1. Statistic: Output should look random.
◮ Theoretical definition.
◮ Series of practical tests.

2. Security
◮ Requirement form the BSI (AIS20, 1999): four security levels.

3. Efficiency
◮ The random values should be constructed fast.
◮ The application that depends on the randomness should run in

a user tolerable time.
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Security levels for PRNGs defined by the BSI

K1 Output should not repeat itself.

K2 Statistical properties of the output should be comparable to
those of an ideal random source.

K3 An attacker observing the output should not be able to predict
previous or future output or worse compute the inner state of
the algorithm.

K4 An attacker knowing the inner state of the algorithm should
not be able to predict previous states or outputs.
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3.3 Constructions of PRNGs
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Basic properties

◮ Statistic: Must pass practical tests (K2).

◮ Efficiency: Determined by practical tests and depends on the
requirements of the application.

◮ Security: Theoretic discussions, that aim to achieve the
one-way properties of K3 and K4.

◮ Cryptographic functions in use:
◮ Hash-functions,
◮ symmetric encryption schemes,
◮ asymmetric encryption schemes.
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Design of a PRNG

Seed
Inner

state

State function

Output function
Output

◮ State function generates a sequence of inner states: I0, I1, . . . .

◮ Output function generates a sequence of output values:
A0, A1 . . .
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Hard-core function

Definition 3.4

Let f be a one-way function. h is a hard-core function of f , if

◮ h can be efficiently computed and

◮ for a random x ∈ {0, 1}∗, f(x)h(x) is a pseudo random
distribution.
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Hard-core predicate

Definition 3.5

Let f be a one-way function. b is a hard-core predicate of f , if

◮ b can be efficiently computed and

◮ b(x) cannot be efficiently predicted, if x is uniformly
distributed, i.e.

◮ b preserves f ’s property to not be efficiently invertible.

A hard-core predicate is a special case of a hard-core function.

February 10, 2011 72 / 257



Iteration paradigm (Blum/Micali (1984))

Definition 3.6

Let f be an efficient, length-preserving and bijective function. Let b
be a hard-core predicate of f . Then

G(x) = b(x)b(f(x)) . . . b(f ℓ(|x|)−1(x))

is a PRNG with streching function ℓ.
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Example 1 Blum-Blum PRNG

Let

◮ N = pq, p and q prime and p, q ≡ 3 mod 4. 1

◮ f(x) = x2 mod N , a one-way permutation.

◮ lsb(x) the least significant bit of x.

Then

◮ lsb(x) is a hard-core predicate of f and

◮ G(x) = lsb(x)lsb(x2 mod N) . . . lsb(x2
ℓ(|x|)−1

mod N) is a
PRNG.

In general: A PRNG can be constructed from every one-way
permutation.

1p and q must be selected at random
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Blum-Blum-PRNG contd.

Input

◮ ℓ, the length of the sequence.

Output

◮ Sequence z1, z2, . . . , zℓ of pseudo random bits.

Algorithm

◮ Pick two primes p and q at random, s.t. p, q ≡ 3 mod 4.

◮ Compute N = pq.

◮ Select at random a seed s with 1 ≤ s ≤ N − 1 and
gcd(s,N) = 1.

◮ Compute x0 = s2 mod N

◮ for i = 1 to ℓ do
◮ xi = x2

i−1 mod N
◮ zi = lsb(xi)

◮ end for.
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Example 2 RSA Generator

Input

◮ ℓ, the length of the sequence.

Output

◮ Sequence z1, z2, . . . , zℓ of pseudo random bits.

Algorithm

◮ Generate two strong RSA primes p and q.

◮ Compute N = pq.

◮ Compute φ = (p− 1)(q − 1).

◮ Choose e with 1 ≤ e ≤ φ and gcd(e, φ) = 1.

◮ Pick at random an initial value x0 with 1 ≤ x0 ≤ n− 1.

◮ for i = 1 to ℓ do
◮ xi = xe

i−1 mod N
◮ zi = lsb(xi)

◮ end for.

February 10, 2011 76 / 257



Example 3 SHA-1 PRNG

◮ Cryptographic hash function SHA-1 is used as output function.

◮ Inner state consists of 40 bytes, which are initialized with some
seed.

◮ The last 8 bytes are interpreted as counter. The state function
increments the counter by 1.

◮ The SHA-1 value of the inner state is computed (20 bytes).
Output the first 8 bytes as random values.

◮ K3 requirement is met, K4 is not!

◮ Promises high speed, since only one SHA-1 computation is
performed per round.
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Example 4 SHA-1 RIPEMD

◮ Cryptographic hash functions:
◮ SHA-1 as output function,
◮ RIPEMD-160 as state function.

◮ Inner state consists of 20 bytes, which are initialized with some
seed.

◮ The inner state is advanced by applying RIPEMD-160.

◮ The SHA-1 value of the inner state is computed (20 bytes).
Output all 20 bytes as random values.

◮ K3 and K4 requirements are met.

◮ Two values have to be computed per round.
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Example 5 Secure Random

◮ Part of the Java cryptography architecture.

◮ Cryptographic hash function SHA-1 as output function and as
part of the state function.

◮ Inner state consists of 20 bytes, which are initialized with some
seed.

◮ Advance to next round: In+1 = In +An + 1 mod 2160.

◮ The SHA-1 value of the inner state is computed (20 bytes).
Output all 20 bytes as random values.

◮ K3 and K4 requirements are met.

◮ Per round only one hash value is computed.
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Example 6: TripleDES

◮ Symmetric encryption using TripleDES as state function.

◮ Key cannot be hard coded, but is rather part of the inner state.

◮ The key and the initial value for the encryption are determined
from the seed.

◮ The inner state is output and encrypted progressively.

◮ K3 requirement is met, K4 is not met.

◮ Per round one TripleDES computation is performed.
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Example 7: Secure Rijndael

◮ Instead of TripleDES AES (Rijndael) is used (much faster).

◮ Also the key k is changed kn+1 = kn ⊕An.

◮ Therefore K4 requirement is met.

◮ Problem: Changing the key in Rijndael is quite inefficient.

◮ Solution: Key is only changed every 10 rounds.

◮ Hence, K4 requirement can be met in steps (by loosing
efficiency).
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3.4 Statistical Tests
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Monobit test and Poker test

Monobit test

◮ The test is passed, if the number of ones (i.e. the set bits) in a
sequence of 20000 bits is in the interval [9726, 10274].

Poker test

◮ A sequence of 20000 bits is separated in 5000 4-bit segments.

◮ The frequency of occurence of the 16 different segment types
is counted and stored in the variables f(i), i = 0, . . . , 15.

◮ The test is passed if

2.16 ≤ X ≤ 46.17 with X =
16

5000

∑

i=0

(f(i)− 5000)2.
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Runs test and longruns test

Runs test

◮ run: Sequence of equal bits (zeros or ones).

◮ In a sequence of 20.000 bits the frequency of occurence of
equal runs (same length, same bit value) is counted.

◮ The test is passed if the frequency of occurence is in a given
interval.

Longruns test

◮ The test is passed if no run of length 26 or more exists in a
sequence of 20.000 bits.
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Continuous test and auto-correlation test

Continuous test

◮ Two consecutive n-bit blocks (n ≥ 16) are compared.

◮ The test fails if they are equal.

Auto-correlation test

◮ This test checks correlations within a generated bit sequence.

◮ A sequence of 10.000 bits b1 . . . b10000 is generated. For
t = 1, . . . , 5000 the following values are computed:

Zt =

5000
∑

j=0

bj ⊕ bj+t.

◮ The test is passed if all Zt are in the interval [2327,2673].
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Maurer’s universal statistical test and naive compression test

Maurer’s universal test

◮ Detects a very general class of possible errors of a generator.

◮ Basic idea: It should be impossible to compress a sequence of
random numbers (without losing information).

◮ Measure for the compressibility of a random sequence.

Naive compression test

◮ Determine the compression rate (i.e. zip compression).

Careful: Seed contains the entire “randomness”.

◮ Number of possible seeds ≥ number of possible sequences,
keys etc.

◮ A seed of length 160 bits results in at most 2160 outputs.
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4. Finding primes and
primality testing
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4.1 The basic algorithm
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There are infinitely many primes

◮ How to find fast, large primes at random?

◮ Find a prime p in the range B, . . . , 2B − 1, where B is big, say
B ≥ 2100.

◮ Let’s start with the famous theorem of Euclid (about 300BC)
about the number of primes:

Theorem 4.1

There are infinitely many primes.
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Proof of Euclid’s prime number theorem

◮ Assume the set of primes is finite and we can denote it as
P = {p1, . . . , pk}.

◮ The number p = p1 · p2 · · · pk + 1 is relatively prime to each of
the primes in P .

◮ On the other hand, according to the fundamental theorem of
arithmetic on unique prime factorization, p has some prime
factors.

◮ These prime factors must be in P .

◮ This contradiction proves the theorem.
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Mersenne primes

◮ Mersenne numbers are of the form Mn = 2n − 1, n ∈ N.

◮ Such a number is not necessarily prime, for example M4 = 15.

◮ When n is composite, then so is Mn.

◮ When searching for Mersenne primes, one may therefore
assume n to be prime.

◮ The largest known prime has almost always been a Mersenne
prime. Why Mersennes?

◮ The way the largest numbers N are proven prime, is based on
the factorizations of either N + 1 or N − 1.

◮ For Mersennes the factorization of N + 1 is as trivial as
possible (a power of two).

◮ The largeset prime known is M43112609 – a number with
12978189 decimal digits.
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Algorithm for finding primes within the range [B, 2B − 1]

Algorithm 4.1

◮ Input: B ∈ Z≥2

◮ Output: A prime p in the range [B, 2B − 1]

1. Repeat steps 2-3:
2. Choose any (odd) number p in [B, 2B − 1] at random.
3. Test whether p is prime.
4. Until the test accepts p.
5. Output p.
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Analysis Algorithm 4.1

◮ How long does this take?

◮ Already testing primality of a given number N is a problem.

◮ Testing all possible factors would take about
√
N divisions.

◮ This is beyond the capabilities of any existing computer.

◮ How many primes are there in a specific range?

◮ Maybe none at all?
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4.2 Probabilistic algorithm
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A probabilistic algorithm

◮ A little modification allows us to get a satisfactory result:

◮ Do we really need to be absolutely sure that N is prime?

◮ We will content ourselves with a number that is prime with a
choosably small error probability!

◮ We replace the rigid primality test by the following algorithm –
called Fermat Test.
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Fermat Test

Algorithm 4.2

◮ Input: A number N ∈ Z, and a confidence parameter t ∈ N.

◮ Output: Either ’N is composite’ or ’N is possibly prime’.

1. Repeat t times steps 2-6:
2. Pick at random a from ZN\{0}.
3. Compute g = gcd(a,N).
4. If g 6= 1, then return ’N is composite’.
5. Compute b = aN−1 ∈ ZN .
6. If b 6= 1, then return ’N is composite’.
7. Return ’N is possibly prime’.
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Analysis of Algorithm 4.2

◮ The Fermat Test fails if it claims ’N is probably prime’ for a
composite number N .

◮ If N is composite the Fermat Test will correclty answer that
’N is composite’.

◮ Consider the case that N is composite.
◮ A number a is called a Fermat witness if aN−1 6≡ 1 mod N

and a Fermat liar otherwise.
◮ If there is at most one witness a with aN−1 6≡ 1 mod N then

at most half of all possible as are liars.
◮ So if there is at least one Fermat witness, then the probability

of failure is small:
◮ The probability that the Fermat Test answers ’N is probably

prime’ under the condition that N is composite is at most 1
2 .

◮ Since we use the Fermat Test t times independently, the failure
probability is at most 2−t.
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Properties of the repeated Fermat Test

1. If it outputs ’N is composite’, then N is composite.

2. If it outputs ’N is probably prime’, then either there is no
Fermat witness for N , or N is prime with probability at least
1− 2−t.

The last statement can be rephrased: The probability that the test
fails on a composite number N , with a witness is at most 2−t.
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4.3 Carmichael numbers and further results
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Carmichael numbers

◮ Composite numbers N without any Fermat witness.

◮ Examples:
◮ 561 = 3 · 11 · 17
◮ 1105 = 5 · 13 · 17
◮ 1729 = 7 · 13 · 19

◮ Alford et al. showed that there are infinitely many Carmichael
numbers.

◮ Problem can be fixed by using ’The strong pseudo primality
test’.
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Strong pseudo primality test

Algorithm 4.3

◮ Input: A number N ∈ Z.

◮ Output: Either ’N is composite’ or ’N is possibly prime’.

1. Write N − 1 = 2kn, where n is odd.
2. Choose a ∈ ZN at random.
3. Compute b← an mod N .
4. If b ≡ 1 mod N then return ’N is probably prime’.
5. Repeat the following k times:
6. if b ≡ −1 mod N then return ’N is probably prime’,
7. otherwise compute b← b2 mod N .
8. Return ’N is composite’.
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Correctness of the strong pseudo primality test

◮ Correctness is based on the following two facts:
◮ In a field F , the only elements a with a2 = 1 are a = ±1.
◮ If N is prime then ZN is a field.

◮ Illustration of the strong pseudo primality test:
◮ Choose a = 113.
◮ Three examples:

N N − 1 = 2kn b0 b1 b2 b3 b4 Output

553 23 · 69 407 302 512 22 composite

557 22 · 139 556 1 probably prime

561 24 · 35 56 331 116 67 1 composite
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Error probabilty of Algorithm 4.3

◮ An integer is squarefree if no square of a prime number divides
it.

◮ Fact 4.2 A Carmichael number is squarefree.

◮ We obtain the following characterization of a Carmichael
number:

N is a Carmichael number

⇔ N is squarefree and ∀p|N, p− 1|N − 1
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Example

◮ The smallest Carmichael number is N = 561 = 3 · 11 · 17.
◮ N − 1 = 560 = 24 · 5 · 7.
◮ φ(N) = 2 · 10 · 16 = 320.

◮ For any a ∈ Z
×
N , we have a2 = 1 in Z3, a

10 = 1 in Z11, and
a16 = 1 in Z17.

◮ Hence a80 = 1 in Z3,Z11, and Z17, and by the CRT also in
ZN .

◮ Now 80 | 560 = N − 1, so that also aN−1 = 1 in Z
×
N .
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Properties of the strong pseudo primality test

(i) If N is prime, the test returns ‘probably prime’.

(ii) If N is composite and not a Carmichael number, the test
returns ‘composite’ with probability at least 1/2.

(iii) If N is a Carmichael number, the test returns a proper factor
of N with probability at least 1/2.

(iv) For an n-bit input N , the test uses O(n3) bit operations.
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Repeating the Algorithm 4.3

◮ The probability that the strong pseudoprimality test answers
incorrectly ‘N is probably prime’ for a composite N is at most
1/2.

◮ When we use this test t times independently, the error
probability is at most 2−t.

Theorem 4.3

The strong pseudo primality test, repeated t times, has the
following properties.

(i) If it outputs ‘N is composite’, then N is composite.

(ii) If it outputs ‘N is probably prime’, then N is prime with
probability at least 1− 2−t.
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What does it mean when a primality test returns ‘probably
prime’?

◮ Is N then ‘probably prime’?

◮ Of course not: N is either prime or it is not.

◮ ‘probably’ refers to the random choices made within the
algorithm.

◮ If the test is run 1001 times, then it means the following: if N
is not prime, then an event has been witnessed whose
probability is at most 2−1001.

◮ If you fly in an airplane whose safety depends on the actual
primality of such an “industrial-strength pseudoprime”, then
this fact should not worry you unduly, since other things are
much more likely to fail :-)

Note: The strong pseudoprimality test is the algorithm of choice for
testing the primality of a given number N , unless deterministic
security is required.
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4.4 Finding prime numbers
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Sieve of Eratosthenes

Algorithm 4.4

◮ Want to find all prime numbers up to a value x.

1. Start with a list (2, 3, 4, ..., x) of all integers up to x.
2. Initially, let p equal 2, the first prime number.
3. Strike from the list all multiples of p less than or equal to x.

(2p, 3p, 4p, etc.)
4. Find the first number remaining on the list after p (this

number is the next prime); replace p with this number.
5. Repeat steps 3 and 4 until p2 is greater than x.
6. All the remaining numbers in the list are prime.
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Analysis of Algorithm 4.4

◮ This method is old (from about 200 BC) and pretty, but its
running time and space are about x log x 4and look pretty old
in view of cryptographic requirements.

◮ Cryptographic requirements must be polynomial in log x.

◮ The following algorithm finds a large pseudo prime at the
latter cost, in the range required by the RSA crypto system.
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Algorithm: Finding a pseudo prime

Algorithm 4.5

◮ Input: An integer n and a confidence parameter t.

◮ Output: A number N in the range from 2(n−1)/2 to 2n/2.

1. Set x = 2(n−1)/2.
2. Repeat steps 3 and 4 until some N is accepted.
3. Pick N at random from the set {⌈x⌉, . . . , ⌊

√
2x⌋}.

4. Call the strong pseudoprimality test t times. Input is N and
everytime a new a independently chosen from {1, . . . , N − 1}.
Accept N if and only if all these tests return ‘N is probably
prime’.

5. Return N .
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Analysis of Algorithm 4.5

◮ In order to find a prime, choose numbers and then test them
until we find a prime.

◮ But if there is no prime in the given range?

◮ Then the algorithm would never stop.

◮ If there are only very few primes, the algorithm would run for a
long time, this is also undesireable.

◮ Good news: There are abundant primes in a given range.
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Prime number theorem

◮ The prime number theorem says approximately how many
primes there are up to some bound x.

◮ Let π(x) denote the number of primes p with p ≤ x.

◮ Besides π(x), the function pn is also useful. It denotes the nth
prime number, for example p3 = 5.

Theorem 4.4

We have approximately

π(x) ≈ x

lnx
and pn ≈ n ln n.
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Runtime analysis of the algorithm

Theorem 4.5

On input n ≥ 11 and t, the output of the algorithm is prime with
probability at least 1− 2−t+1 n. It uses an expected number of
O(tn4) bit operations.
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A word on deterministic prime tests

◮ There exist deterministic prime tests.

◮ The first one running in polynomial time was proposed in 2002
by Agrawal, Kayal and Saxena.

◮ The running time of this test is approximately O(log6(N))
operations, where N is the number to be tested.
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5. One-way functions and
Hash-functions
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One way function

Definition 5.1

◮ One-way function f : A→ B.
◮ Linear or polynomial runtime.
◮ A single computer can calculate it in less than 50ms.

◮ f−1(y) = x cannot be computed in practice for most randomly
selected values.

◮ At least exponential runtime or NP -complete.
◮ Cannot be computed in 1000 years, even if all computers in

the world work on this task.
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Applications of one-way functions

◮ First used by R.M. Needham and Wilkes in 1968:
◮ Storage of encrypted passwords.
◮ Example of Purdy (1974):

f : Z/pZ→ Z/pZ with p = 264 − 59

f(x) = x224+17 + a1x
224+3 + a2x

3 + a3x
2 + a4x+ a5, ai ≈ 1019
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Applications of one-way functions contd.

◮ Cryptographic Hash-functions,

◮ pseudo random number generators,

◮ secret sharing,

◮ zero-knowledge proofs.
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5.1 Cryptographic Hash-functions
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Cryptographic Hash-function

Definition 5.2

◮ A one-way function f with:
◮ Result f(x) = y has constant length.
◮ Second preimage resistant: For a given value v it is practically

impossible to compute a different value w, s.t. f(v) = f(w).
◮ Collision free: It should be difficult to find two different values

v and w, such that f(v) = f(w).
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Widely used Hash-functions

◮ Message Digest, MD2, MD4, MD5 (weak),

◮ Secure Hash Algorithm 1, SHA-1: 160-bit Output,
NIST-Standard (weak),

◮ SHA-2 family: SHA-224/512 (good).
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Example SHA-256

◮ Input: Document with up to 264 bit length.

◮ Input is processed in 512 bit blocks. Document might need
padding.

◮ Output: 256 bit message digest.
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5.2 One-way functions for asymmetric
crypto systems

February 10, 2011 124 / 257



One-way functions for asymmetric crypto systems

Definition 5.3

◮ Let a and b be two numbers (keys),

◮ m be the plaintext, and

◮ f(a,m) = c the ciphertext.

Then f is a one-way trapdoor function, if

◮ every function g in a and c with g(a, c) = f−1 cannot be
computed in practice, i.e. f cannot be inverted knowing only
public information.

◮ There exists a function h(a, b, c) = f−1 (also with b as a
parameter), which can be easily computed, i.e. f can be easily
inverted knowing some secret.

February 10, 2011 125 / 257



6. RSA
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Basic idea

◮ It is easy to find to large primes p and q and to compute
N = pq.

◮ It is hard to factor N .
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6.1 Theoretical Foundations
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Euler’s ϕ-function

Definition 6.1 Euler’s ϕ-function

◮ For N ∈ N we have

ϕ(N) = N
∏

p|N

(1− 1

p
)

where the p are distinct.
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Carmichael λ-function

◮ For p = 2 and m = 2

λ(22) = ϕ(22) = 2

◮ For p = 2 and m ≥ 3, m ∈ N

λ(2m) =
1

2
ϕ(2m)

◮ For all primes p ≥ 3, m ∈ N

λ(pm) = ϕ(pm) = pm − pm−1

◮ For N = pm1
1 pm2

2 . . . pmk

k

λ(N) = lcm(λ(pm1
1 ), λ(pm2

2 ), . . . , λ(pmk

k ))
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Summary

◮ Now we have for all m,N ∈ N, m,N coprime:
◮ Theorem of Euler: mϕ(N) ≡ 1 mod N .
◮ Theorem of Carmichael: mλ(N) ≡ 1 mod N .

◮ Let N = p1p2 . . . pk, pi distinct, then we have for all m ∈ N

mλ(N)+1 ≡ m mod N

and for all k ∈ N

mkλ(N)+1 ≡ m mod N.

◮ Let N = pq, p and q prime, p 6= q, and k,m ∈ N then we
obtain an important formula for RSA:

m ≡ mk(p−1)(q−1)+1 mod N.
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6.2 Construction of the RSA one-way
function
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Setup

◮ N = pq with p, q prime and p 6= q.

◮ e ∈ N with e > 1 and gcd(e, λ(N)) = 1.

◮ enc(m, (e,N)) ≡ me mod N with m < N , m ∈ N.

◮ d ∈ N with de ≡ 1 mod λ(N), i.e. mde ≡ m mod N for all
m ∈ N.

◮ dec(c, (d,N)) ≡ cd mod N with c ∈ N and c < N .
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Properties

◮ enc(m, (e,N)) and dec(c, (d,N)) are easy to compute.

◮ d can be easily computed from p and q or from λ(N).

◮ It is hard to compute dec(c, (d,N)) without knowledge of d.

◮ dec = enc−1

⇒ enc(m) is a one-way function with trapdoor d.
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Usage of RSA

◮ Most important task for using RSA in practice is to find large
prime numbers.

◮ Today, the largest threat for RSA is the development of
efficient algorithms for factoring integers.
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6.3 Generating RSA keys
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Step 1 and 2

1. Select two primes p and q, s.t.:
◮ p and q are sufficiently large.
◮ |p− q| large, but not too large. IEEE P1363 suggests

1
2 < |log2p− log2q| < 30.

◮ p ≡ −1 mod 12 and q ≡ −1 mod 12.
◮ p1 = 1

2 (p− 1), q1 = 1
2 (q − 1), 1

12 (p+ 1) and 1
12 (q + 1) are

prime as well.

2. Compute N = pq and z = 2p1q1.
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Steps 3 and 4

3. Select at random e ∈ N, such that:
◮ gcd(e, z) = 1.
◮ e− 1 is neither a multiple of p1 nor q1.

4. Compute – using the Extended Euclidean Algorithm – d and
z′, s.t.:

◮ 0 < d < z,
◮ de+ zz′ = 1.
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Steps 5 to 7

5. Destroy p, q, z and z′.

6. Keep S = d secret (secret key).

7. Publish P = (e,N) (public key).
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Selecting RSA primes

◮ Let n be the bit length of N .

◮ Use the strong pseudo prime algorithm with a confidence
parameter t = ⌈log2(2n)⌉+ s.

◮ Then the algorithm returns a prime with probability at least
1− 2−s and it uses an expected number of O((s+ logn)n4)
bit operations.

◮ With s = 20 + log2n the probability of failure is at most
0.000001/n and we expect O(n4logn) operations.

February 10, 2011 140 / 257



RSA efficiency

Find n/2-bit primes at random O(n4 logn),

Calculate d from e O(n2),

Calculate powers modulo N O(n3).

Altogether the key generation can be done in time O(n4), and the
encryption in RSA of one plaintext block needs O(n3) bit
operations.
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6.4 Confidentiality with RSA
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Encryption

◮ Alice sends a secret message m to Bob.

◮ Encryption by Alice:

1. Represent plaintext as m ∈ N.
2. Divide m = . . .mi . . . in blocks, with mi < NB.
3. Encrypt every mi with PB = (eB, NB), the public key of Bob:

enc(mi, PB) = meB
i mod NB = Ri.

4. Send Ri to Bob.
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Decryption

◮ Decryption by Bob:
◮ Decrypt every Ri with SB = dB , his secret key:

dec(Ri, SB) = RdB

i mod NB = mi
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6.5 Integrity and authenticity with RSA
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Signing

◮ Alice signs a message m and sends it to Bob.

◮ Signing by Alice:

1. Represent message as m ∈ N.
2. Choose a hash-function h and compute:

m̄ = h(m)

3. Separate m̄ in blocks, with m̄i < N , if necessary.
4. Sign m̄ with SA = dA, her secret key:

sig-gen(m̄, SA) = m̄dA mod NA = σ.

5. Send (m,σ) to Bob.
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Verification

◮ Verification by Bob:

1. Receives (m,σ).
2. Computes – using the shared hash function:

m̄ = h(m).

3. Separate m̄ in blocks, with m̄i < N , if necessary.
4. Verifies the signature with PA = (eA, NA), with the public key

from Alice.

sig-ver(σ, PA) = σeA mod NA = m̄′

◮ The verification is successful if m̄ = m̄′, then we can be sure
about integrity and authenticity.

◮ Otherwise: Discard message and signature.
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6.6 Computing the secret key and factoring the
modulus are equally hard
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Proof - Part 1

◮ Given p and q, the factors of N . Find d.

◮ Since we know e, the public key, we can easily compute d by
solving:

de ≡ 1 mod (p− 1)(q − 1)
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Proof - Part 2

◮ Let d be known. Find p and q. From de ≡ 1
mod (p− 1)(q − 1), we know there is some k ∈ Z, such that
ed− 1 = k(p − 1)(q − 1).

◮ We know for all a ∈ Z
∗
N

aed−1 ≡ 1 mod N

◮ Let ed− 1 = 2st with t = 2i+ 1.

◮ Then for about half the elements a ∈ Z
∗
N we have:

a2
s−1t 6≡ ±1 mod N

◮ For an a that fulfills the above equation we have that
gcd(a2

s−1t, N) is a proper factor of N .

◮ Choose some a ∈ Z
∗
N and compute gcd(a2

s−1t, N).

In general: Every method, which can compute φ(N) or d, can also
factor N .
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6.7 Attacks on RSA
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Homomorphic properties

◮ Encryption of products, without knowledge of factors:

me
1m

e
2 mod N = (m1m2)

e mod N = R1R2
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Forging signatures

◮ Let σ1 = md
1 mod N and σ2 = md

2 mod N be public.

◮ The attacker computes:
◮ σ1σ2 mod N = md

1m
d
2 mod N = (m1m2)

d mod N ,
◮ σ−1

1 = (md
1)

−1 mod N = (m−1
1 )d mod N ,

◮ −σ1 = −(Ld
1) mod N = (−m1)

d mod N .

◮ Most of the time m1m2 does not make sense for language, but
it can be useful for numbers.

◮ Fix: insert redundancy (human semantics).
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Adaptive chosen ciphertext attack

◮ Attacker Charlie wants to decrypt a message R = me mod N
which was meant for Alice.

◮ Alice decrypts messages – except R – chosen by Charlie and
shows him the outcome.

◮ Charlie chooses x ∈ Z
∗
N and computes R1 = Rxe mod N .

◮ Alice computes for Charlie m1 = Rd
1 mod N .

◮ We get
m1 ≡ Rd

1 ≡ Rd(xe)d ≡ mx mod N.

◮ So Charlie can compute the message R.
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Using the same small exponent e for several users

◮ Let for example e = 3 (for best performance this is even
recommended).

◮ If we have three participants with different modulus and the
same plaintext we have:

◮ R1 = m3 mod N1

◮ R2 = m3 mod N2

◮ R3 = m3 mod N3

◮ Then by applying the Chinese Remainder Theorem we get:

R = m3 mod N1N2N3 = m3.

◮ A suggested solution: split messages in shorter blocks and pad
with random values.
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Using the same modulus for several users

◮ Knowledge of one pair (e0, d0) allows factoring N .

◮ Then all pairs (ek, dk) can be computed.

⇒ Everybody can read all messages - despite having different keys.
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Decryption of algebraically “related” messages

◮ Choose for example e = 3.

◮ Consider

R1 = m3 mod N and R2 = (m+ 1)3 mod N

◮ Then it holds:

R2 + 2R1 − 1

R2 −R1 + 2
=

(m+ 1)3 + 2m3 − 1

(m+ 1)3 −m3 + 2
=

3m3 + 3m2 + 3m

3m2 + 3m+ 3
= m
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Fixpoint attack

◮ Let o be the order of e in Z

λ(N)Z . Then it holds that

eo ≡ 1 mod λ(N)

◮ and for all messages m it holds

meo ≡ m mod N.

◮ Solution: pick e with large order.
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Wiener’s attack on short secret keys

◮ Small d can be found in polynomial time by using partial
fraction decomposition.

◮ Solution: the length of d and N should be about the same.
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Conclusion

◮ None of the above mentioned attacks is dangerous if RSA is
used with the recommended protection mechanisms.

◮ At the moment: Only advances in developing efficient
factoring algorithms cause pressure.
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7. Foundations of asymmetric
crypto systems based on
groups
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Basis for asymmetric Cryptosystems

◮ A finite cyclic abelian group G with prime order |G| and a
generator g ∈ G.

◮ If the order of |G| is not prime then a prime order subgroup H
of G is selected.

◮ The notation of the group operation is sometimes written
multiplicativly and sometimes additivly – depending on the
context.

Basis for elliptic curve asymmetric crypto systems

◮ The additive group of points on an elliptic curve.
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Properties of G for asymmetric crypto systems

◮ Multiplication/exponentiation is easy.

◮ Inverse operation (division/ computing logarithms) is hard.

◮ It is possible to generate elements in G that are distributed
close to uniform.
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Dicrete log problem (DLP)

Definition 7.1:

◮ Let G be a finite group.

◮ Given g, h ∈ G, find the smalles n ∈ N, if one exists, such that
gn = h
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7.1 Cryptosystem based on the discrete log
problem
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General rule

◮ If it is possible to break a crypto system in G then all other
crypto systems working in G are insecure as well.
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Diffie-Hellman key exchange

Goal:

◮ Alice and Bob want to chose a random element from G as
their secret.

Prerequisites:

◮ Public: group G and an element g ∈ G with large order.
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Diffie-Hellman key exchange cntd.

Method:

i) Alice generates a ∈ [1, |G| − 1] and sends x = ga to Bob.

ii) Bob generates b ∈ [1, |G| − 1] and sends y = gb to Alice.

iii) Alice computes ya = (gb)a = gab.

iv) Bob computes xb = (ga)b = gab.

=⇒ gab is only known to Alice and Bob.
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Attack (Diffie-Hellman problem, DHP

◮ Evesdropper Eve knows: G, g, x = ga and y = gb.

◮ If Eve can compute gab, then she has solved the DHP in G.

◮ It is conjectured (e.g. by Maurer (1994)) that for most groups
used in cryptography the DHP and the DLP is equivalent.
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ElGamal encryption(1985)

Goal:

◮ Alice wants to send to Bob the message m ∈ G in a
confidential way.

Prerequisites:

◮ Public: Group G and some element g ∈ G with large order.

◮ Secret key of Bob: b ∈ [1, |G| − 1].

◮ Public key of Bob: B = gb.
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ElGamal encryption cntd.

Method:

i) Alice generates a random a ∈ [1, |G| − 1].

ii) She computes x = ga and c = Bam, and sends (x, c) to Bob.

iii) Bob computes
cx−b = Bam(ga)b = (gb)am(ga)−b = gab−abm = m.
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ElGamal Signatures (1985)

Goal:

◮ Bob signs a message m ∈ Zd.

Prerequisites:

◮ Public: Group G and some element g ∈ G with large order d.

◮ Public: f : G→ Zd, bijective.

◮ Secret key of Bob: b ∈ Zd.

◮ Public key of Bob: B = gb.
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ElGamal Signatures cntd.

Method:

i) Signing by Bob:

a) Generates a random k ∈ Z
×

d .
b) Computes K = gk.
c) Solves:

kσ + bf(K) ≡ m mod d

for σ ∈ Zd.
d) Sends (m,K, σ) to Alice. The signature of m is (K,σ).

ii) Alice computes:
z = Bf(K)Kσ =

and verifies z = gm?
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Digital signature according to DSA without Hash-function

DSA: Digital Signature Algorithm.

◮ Motivation: Speed up the verification of the digital signature
based on ElGamal.

◮ Goal and prerequisites as above.
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DSA cntd.

Method:

i) Signing by Bob:

a) Generates a random k ∈ Z
×

d .
b) Computes K = gk.
c) Solves:

−bf(K) + σk ≡ m mod d

for σ ∈ Zd.
d) Sends (m,K, σ) to Alice. The signature of m is (K,σ).
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DSA cntd.

ii) Verification by Alice:

a) u = mσ−1

b) v = f(K)σ−1 mod d

c) w = guBv = gmσ−1

gvb = gmσ−1+bf(K)σ−1

= gσ
−1(m+bf(K))

d) Verify if w = s.

Advantage: Verification via two exponentiations in G, ElGamal
needs three.
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Encryption due to Massey-Omura

◮ Rarely used, but very elegant.

Goal:

◮ Alice wants to send a message m to Bob in a confidential way.

Prerequisites:

◮ Public: group G with large order.
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Massay-Omura cntd.

Method:

i) Alice generates at random a ∈ [1, |G| − 1] with gcd(a, |G|) = 1
and sends to Bob x = ma.

ii) Bob generates at random b ∈ [1, |G| − 1] with gcd(b, |G|) = 1
and sends to Alice y = xb = mab.

iii) Alice sends z = ya
−1

= maba−1
= mb.

iv) Bob computes zb
−1

= mbb−1
= m
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Digital Signatures according to Nyberg-Rueppel (1996)

Properties:

◮ A series of signature schemes with message recovery.

◮ Difference to ElGamal: Message is m ∈ G.

◮ In the lecture we look at the variant of Piveteau (1993),
without message recovery.

Goal:

◮ Bob signs a message m ∈ G.
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Nyberg-Rueppel cntd.

Prerequisits:

◮ Public: Group G and g ∈ G with large order.

◮ Public: f : G→ Z/ |G|Z, bijective.

◮ Secret key of Bob: b ∈ [1, |G| − 1] with gcd(b, |G|) = 1.

◮ Public key of Bob: PB = gb.
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Nyberg-Rueppel cntd.

i) Signing by Bob:

a) Generates a random k ∈ [1, |G| − 1] with gcd(k, |G|) = 1.
b) Computes s = mg−k.
c) Solves:

1 ≡ bf(s) + tk mod |G|
for t ∈ [1, |G| − 1].

d) Sends (m, s, t) to Alice. The signature of m is (s, t).

ii) Verification by Alice:
◮ Compute

P
−f(s)
B st = gtk−1−tkmt = z

◮ Check z = mtg−1.
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Reduction of problems

◮ It is always conjectured, but there is no proof that breaking
one of the above schemes also breaks RSA.

◮ There is no proof that breaking RSA is equivalent to factoring
the modulus. In fact, Boneh/V enkatesan(1998) back up the
conjecture that this is not the case.

◮ DHP = DLP can only be proven for some special cases.
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The function f : G→ Z/ |G|Z

◮ Using g = F
×
p , f is canonical.

◮ For other groups one can weaken the condition that f has to
be bijective. We can look for a set M , with about the same
order as G, |G| ∼ |M |, such that

f : G→ Z/ |M |Z

is almost injective.
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Usage of f in Elliptic curve cryptography

◮ (x, y) are coordinates of points, but only x is inserted into f .

◮ Using G = Fp, p prime |G| ∼ p is chosen and x ∈ Fp is
considered an integer.

◮ Using G = F , F a field with char(F ) = 2, i.e. F = F2n , x
has to be denoted as integer as well. In practice x is
considered a basis of F2n over F2 and the coordinates of x are
digits of a binary number.
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7.2 Groups for asymmetric crypto systems
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DLP today

The presented crypto schemes are based on arbitrary abelian
groups, but for implementation simple operations are required, e.g.
a simple algebraic expression.
DLP today

◮ Easily solvable in additive subgroups of finite fields.

◮ Not solvable on elliptic curves over finite fields.

◮ Usually for crypto systems the group F
×
p over large p is

considered.

◮ DLP can be solved in F
×
p in subexponential time (McCurley

(1990) and Adleman (1994)). Methods are based on ideas of
factoring with number field sieves (Lenstra (1993)).
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Increasing complexity using number theory

◮ Replace F
×
p by E(Fp), the set of rational points on an elliptic

curve in Fp.

◮ Result: DLP in the additive group E(Fp) is several orders of
magnitude harder that DLP in the multiplicative group F×

p of
same order.
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7.3 Comparison of key lengths
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Time complexity

◮ DLP in E(Fq): exponential to n = log2 q

◮ DLP in F
×
p subexponential to N = log2 p

Key length in elliptic curve crypto systems grows proportional to
the 3. root of the key length in conventional crypto systems.
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Comparison of key length

AES RSA/DLP ECC/DLP

80 1024 160

112 2048 224

128 3072 256

192 8192 384

256 15360 512

Complexity of implementation

◮ The operation in E(Fq) is more complex than in F
×
p :

otherwise there is no difference.
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8. Elliptic curves in finite
fields
8.1 Projective geometry

February 10, 2011 191 / 257



Introduction

◮ Content: properties of structures that do not change during
projection.

◮ Relation to elliptic curves: results in an additional point, which
is important for the group definition.

◮ History:
◮ da Vinci, Dürer, 15th century: study of perspective in

paintings.
◮ Monge, 18th century: descriptive geometry (forms of

projections).
◮ Poncelet, 19th century: Projective geometry.

◮ Observation:
◮ In images of the central projection parallel lines intersect.
◮ The difference between parallel and intersecting lines is lost.
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Idea: Consider artificial elements

q Q1 Q2 Qp Q3

p

Pq

P3

P2

S

P1
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Artificial points

◮ Consider a line p.

◮ Select a second line q and a point S, the auxiliary point, which
neither lies on p nor q.

◮ Draw lines through S: Qi is is the point on q that was
projected by Pi on p.

◮ Relating Pi to Qi is bijective, except for points Pq and Qp.

◮ Define:
◮ the point Qp on q has an image on p: the artificial point P∞.
◮ the point Pq on p has an image on q: the artificial point Q∞.
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Artificial points cntd.

◮ Qp is reached, if one follows the line p in both directions.

◮ With Qp, p becomes a closed line in the projection.

◮ Every line has only one artificial point.

◮ In projections it does not make sense to distinguish inner and
outer points for line segments.

◮ Instead for a pair of points we say:
◮ they divide each other, e.g. (P1, P3) or (P2, Pq) or
◮ they do not divide each other, e.g. (P1, Pq) or (P2, P3) .
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Distinguish using artificial points

◮ Consider an additional line r in the image.
◮ If p and r are parallel, then r has also the artificial point P∞

(Qp in the projection onto q).
◮ In case p and r intersect, then r has an artificial point different

from P∞ (Qr in the projection onto q).

◮ The images of all parallel lines intersect in one point during a
central projection from one plane into an inclined plane.

i) The artificial point depends only on the direction of the line
and can be associated with the direction.

ii) The artificial point is considered as a regular point of a
projective line.

iii) P∞ and Q∞ determine the artificial line:
◮ the set of artificial points of all lines,
◮ the set of all intersections of parallel lines.

In general two lines intersect in the projective plane in exactly one
point.
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8.1.1 Projective coordinates on a line
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Projective coordinates

Problem:

◮ the position of a point on an affine line is determined by a
coordinate. The coordinate depends on the choice of the
origin and the unit line segment.

◮ Affine maps between lines preserve the coordinate ratios of
original and image points, respectively.

Solution: projective coordinates.
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Approach
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Approach cntd.

◮ Consider the line p in the plane M , i.e. a structure in the next
dimension.

◮ Select a basis on M with two linearly independent vectors sa
and sb and a point S not lying on p as the origin.

◮ A unique line with the auxiliary point S is assigned to every
point P on p.

◮ Therefore P is uniquely determined by the coordinates (a, b) of
a vector

s = asa + bsb.
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Approach contd.

◮ With every k 6= 0 also (ka, kb) determine the point P .

◮ (a, b) are called the homogeneous coordinates of P .

◮ The points A(1, 0) and B(0, 1) on p are the basic points and
E(1, 1) is the unit point on p corresponding to the basis M .

◮ The homogeneous coordinates of P∞ are determined by the
slope of p.
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8.1.2 Algebraic approach in the projective
plane
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Affine Space

Definition 8.1 Let F be a field then

◮ A1(F) = {(a)|a ∈ F} is the one dimensional affine space over
F.

◮ A2(F) = {(a1, a2)|a1, a2 ∈ F} is the two dimensional affine
space over F.
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Homogeneous coordinates

Definition 8.2 Let ai, bi, t ∈ F, t 6= 0,

◮ (a1, . . . , ak) and (b1, . . . , bk) are homogeneously equivalent
[a1, . . . , ak] ∼ [b1, . . . , bk] if ai = tbi.

◮ The one dimensional projective space over F, i.e. the
projective line, is

P1(F) = {[a1, a2]|(a1, a2) 6= (0, 0)}

[a1, a2] are the homogeneous coordinates of a point on P1(F).

◮ The two dimensional projective space over F, i.e. the
projective plane, is

P2(F) = {[a1, a2, a3]|(a1, a2, a3) 6= (0, 0, 0)}

[a1, a2, a3] are the homogeneous coordinates of a point on
P2(F).

◮ The homogeneous coordinates [a1, . . . , ak] are normalized, if
a1, . . . ak are coprime.
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Geometric and algebraic considerations

◮ Geometrically speaking one can consider P2 as the affine
space in addition with the set of directions, i.e.

P2 = A2 ∪ {set of directions in A2}.

◮ Algebraically, one considers the maps

µ : A2(F)→ P2(F)

(a, b) 7→ [a, b, 1]

v : F→ P2(F)

a 7→ [a, 1, 0]

as well as the point [1, 0, 0].

◮ The map µ embeds the affine space canonically into the
projective space.

◮ The map v captures with the base field all affine directions.

◮ [1, 0, 0] is the artificial point of the direction line.
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Geometric and algebraic considerations

◮ It holds that

P2(F) = µ(A2(F)) ∪ v(F) ∪ {[1, 0, 0]}

or simply P2 = A2 ∪P1.
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8.1.3 The line in the plane
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The line in the plane

◮ Line L in the affine plane:
Set of zeros of

f(x, y) = ax+ by + c with (a, b) 6= (0, 0) in A2(F),

i.e. the affine coordinates

L = {(x, y) ∈ A2(F)|f(x, y) = 0}

◮ Line L in the projective plane:
Set of zeros of

F (X,Y,Z) = aX+bY +cZ with (a, b, c) 6= (0, 0, 0) in P2(F),

i.e. the homogeneous coordinates

L = {(X,Y,Z) ∈ P2(F)|F (X,Y,Z) = 0}
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Projective case

◮ For the projective line we have
F (tX, tY, tZ) = tF (X,Y,Z), t 6= 0, i.e. with [X,Y,Z] ∈ L
also [tX, tY, tZ] ∈ L.

◮ To consider projective solutions of polynomials – i.e. in order
to tell that [X,Y,Z] is a solution – with zero (X,Y,Z) also
(tX, tY, tZ) for all t 6= 0 must be a zero.
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Homogeneous polynomial

Definition 8.3 A polynomial F (X,Y,Z) =
∑

arX
iY jZk of

degree d is called homogeneous if always i+ j + k = d for all
ar 6= 0.
A homogeneous polynomial fulfills

F (tX, tY, tZ) = tdF (X,Y,Z),

i.e. it is possible to consider its solutions in the projective plane.
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8.1.4 Plane curves
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Singular points

Definition 8.4 Let f ∈ F[x, y] be a polynomial over the field F.

◮ The zeros of f(x, y) define an affine plane curve

Cf (F) = {|(x, y) ∈ A2(F)|f(x, y) = 0}

◮ (a, b) ∈ A2(F) is a singular point of Cf (F),if
◮ (a, b) is a point on Cf (F), (a, b) ∈ Cf (F), i.e. f(a, b) = 0.
◮ Both derivatives of f vanish in (a, b), i.e.

δf

δx
(a, b) =

δf

δy
(a, b) = 0

◮ Cf (F) is singular over F, if it has a singular point
(a, b) ∈ A2(F) .

◮ Cf (F) is non-singular if it has no singular point, even over the
algebraic closure.
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Singular point - homogeneous case

Definition 8.5 Let F ∈ F[X,Y,Z] be a homogeneous polynomial
over the field F.

◮ The zeros of F (X,Y,Z) define a homogeneous plane curve

CF (F) = {[X,Y,Z] ∈ P2(F)|F (X,Y,Z) = 0}

◮ [A,B,C] ∈ P2(F) is a singular point of CF (F), if
[A,B,C] ∈ CF (F) and

δF

δX
(A,B,C) =

δF

δY
(A,B,C) =

δF

δZ
(A,B,C) = 0
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Moving affine to projective coordinates

◮ Let f ∈ F[x, y]. With

x =
X

Z
and y =

Y

Z

we move f(x, y) into its homogeneous form F (X,Y,Z).
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8.2 Elliptic curves
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Elliptic curve in homogeneous form

Definition 8.6 Let F be a field and

F (X,Y,Z) = Y 2Z+a1XY Z+a3Y Z2−X3−a2X2Z−a4XZ2−a6Z3

be a homogeneous polynomial of degree 3 with
a1, a2, a3, a4, a6 ∈ F. In case the projective curve

CF (F) = {[X,Y,Z] ∈ P2(F)|F (X,Y,Z) = 0}

is non-singular, then CF (F) is an elliptic curve in homogeneous
form.
The Weierstraßequation of CF is

C : Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + aZ6 3
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The point at infinity

◮ The affine part of CF (F) are points [X,Y, 1], i.e. points on
Cf (F) with

f(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6.

◮ The projective part of CF (F) are points [X,Y, 0].

◮ Let [X,Y, 0] ∈ P2(F). Plugged into C, one obtains X3 = 0
and Y 6= 0, i.e. a triple zero and we define

O = [0, Y, 0] = [0, 1, 0] ∈ CF (F).

◮ Therfore, O = [0, 1, 0] is the only non-affine point on an
elliptic curve.
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The point at infinity cntd.

◮ O is for all polynomials F a regular point of the curve CF (F)
with

δF

δZ
(0, 1, 0) = 1,

i.e. testing for singularity can be done in the affine world.

◮ When considering elliptic curves O is called the point at
infinity and O is a rational point.

◮ O is also:
◮ the projective intersection of vertical lines,
◮ a point of inflection of CF (F).
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Weierstraßreduction

Observation:

◮ There are different elliptic curves which have the same rational
points.

Task: Find the following elements:

◮ A transformation that projects the rational points of two
elliptic curves bijectively on each other.

◮ An elliptic curve of simple form, i.e. with few terms, onto
which the rational points of all/many curves can be projected.

February 10, 2011 219 / 257



Weierstraßnormal form

Result: Weierstraßnormal form

◮ Curves in the original and in the Weierstraß normal form have
different shapes.

◮ Examining rational points on elliptic (in general on cubic)
curves can be reduced to Weierstraß normal form.

We will now show:

◮ The Weierstraß normal form of an elliptic curve depends on
the characteristic of the base field.

◮ The larger the characteristic of the base field the easier the
Weierstraß normal form.
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Weierstraß reduction

Theorem 8.7 (Weierstraß reduction) Let CF (F) be an elliptic
curve over the field F with

F (X,Y,Z) = Y 2Z+a1XY Z+a3Y Z2−X3−a2X2Z−a4XZ2−a6Z3

i) Let char F = 2 and a1 6= 0. Then

a) The transformation Γ1 : P
2(F)→ P2(F) with

Γ1([X,Y, Z]) =

[

X

a21
− a3Z

a31
,
Y

a31
− (a21a4 + a23)Z

a61
, Z

]

is bijective.
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Theorem Weierstraß reduction cntd.

b) Let

G1(X,Y,Z) = Y 2Z +XY Z −X3 − b2X
2Z − b6Z

3

with

b2 =
a3 + a1a2

a31
and

b6 =
a61a6 + a51a3a4 + a41a2a

2
3 + a41a

2
4 + a31a

3
3 + a43

a121
.

Then we have
Γ1(CF (F)) = CG1(F)

The Weierstraß normal form of an elliptic curve with new
coefficients over a field with characteristic 2 is

Y 2Z +XY Z = X3 + a2X
2Z + a6Z

3(homogeneous)

y2 + xy = x3 + a2x
2 + a6(affine)

i.e. a1 = 1 and a3, a4 = 0.
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Theorem Weierstraß reduction cntd.

ii) Let char F 6= 2.Then
a) The transformation Γ2 : P

2(F)→ P2(F) with

Γ2([X,Y, Z]) =

[

X,Y +
a1x

2
+

a3Z

2
, Z

]

is bijective.
b) Let

G2(X,Y, Z) = Y 2Z −X3 − 1

4
c2XZ2 − 1

4
c6Z

3

with c2 = a21 + 4a2, c4 = 2a4 + a1a3 and c6 + a23 + 4a6. Then
we have

Γ2(CF (F)) = CG2
(F)

The Weierstraß normal form of an elliptic curve over a field with
characteristic not equal 2 is

Y 2Z = X3 + a2X
2Z + a4XZ2 + a6Z

3(homogeneous)

y2 = x3 + a2x
2 + a4x+ a6(affine)

i.e. a1, a3 = 0.
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Theorem Weierstraß reduction cntd.

iii) Let char F 6= 2, 3.Then
a) The transformation Γ3 : P

2(F)→ P2(F) with

Γ3([X,Y, Z]) = [36X + 3c2Z, 216Y, Z]

is bijective.
b) Let

G3(X,Y, Z) = Y 2Z −X3 + 27d4XZ2 + 54d6Z
3

with d4 = c22 − 24c4, d6 = −c32 + 36c2c4 − 216c6. Then we have

Γ3(CG2
(F)) = CG3

(F)

The Weierstraß normal form of an elliptic curve over a field with
characteristic not equal 2 and 3 is

Y 2Z = X3 + a4XZ2 + a6Z
3(homogeneous)

y2 = x3 + a4x+ a6(affine)

i.e. a1, a2, a3 = 0.
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Proof of Weierstraß normal form construction

The steps for the proof for (i),(ii) and (iii):

◮ Construction of a transformation Γ−1
i , an inverse to Γi, e.g.

Γ−1
2 ([X,Y,Z]) =

[

X,Y − a1X

2
− a3Z

2
, Z

]

◮ Moving to Gi by substituting the variables in F (respectively
G2) according to Γ−1

i , e.g.: Evaluate

F (X,Y − 1

2
a1X −

1

2
a3Z,Z)

with the goal G2(X,Y,Z).

◮ Proof of non-singularity of CGi
(F) by computing partial

derivatives, e.g. by using the chain rule.

δG2

δX
(X,Y Z) =

δF

δX
(Γ−1

2 (X,Y,Z)) − a1
2

δF

δY
((X,Y,Z))
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Discriminant and j-Invariant

Definition 8.8 Let CF (F) with

F (X,Y,Z) = Y 2Z+a1XY Z+a3Y Z2−X3−a2X2Z−a4XZ2−a6Z3

and

b2 = a21 + 4a2

b4 = 2a4 + a1a3

b6 + a23 + 4a6

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24
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Discriminant and j-Invariant cntd.

i) The discriminant of the elliptic curve CF (F) is

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6.

ii) The j-Invariant of CF (F) is

j =
(b22 − 24b4)

3

∆

◮ The j-Invariant determines the isomorphism class of an elliptic
curve over the algebraic closure.

◮ The discriminant gives information about the singularity of an
elliptic curve.
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Singularity

Theorem 8.9 CF (F) is singular if and only if, ∆ = 0.
Proof: Exercise.
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8.3 The group law
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Operation on points of an elliptic curve

We can define an operation on the set of points of an elliptic curve
which leads to an abelian group.
Ways to introduce the operation:

◮ Using algebra only: not very descriptive,

◮ traditional geometry (affine): motivation incomplete,

◮ projective geometry: combines clear description with analytics.
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8.3.1 Projective lines
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Projective lines

◮ A projective line L(a, b, c) is a projective curve CF (F) with

F (X,Y,Z) = aX + bY + cZ and (a, b, c) 6= (0, 0, 0).

◮ The affine reduction of L(a, b, c), l(a, b, c) is CF (F) with

f(x, y) = ax+ by + c.

◮ If (a, b) 6= (0, 0), then l(a, b, c) is a line in the affine plane.

◮ Otherwise, L(a, b, c) has no affine part and l(a, b, c) is empty.
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Properties of projective lines

◮ A projective line is non-singular if there is no point in which all
partial derivatives vanish simultaneously.

◮ Given two projective points, there is exactly one projective line
that runs through both of them.

◮ Let P1 = [x1, y1, z1] and P2 = [x2, y2, z2], P1 6= P2.
◮ Plugging these points into a projective line results in two

linearly independent equations

ax1 + by1 + cz1 = 0

ax2 + by2 + cz2 = 0

which have a linear solution space.
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Intersection of projective lines

◮ Two projective lines intersect always in one point:

i) The lines have an affine intersection point.
ii) The lines do not have an affine intersection, i.e. are parallel in

the affine space:
◮ Consider two parallel affine lines

f1(x, y) = y − ax

f2(x, y) = y − ax− c

and their projctive description:

F1(X,Y, Z) = Y − aX

F2(X,Y, Z) = Y − aX − cZ

◮ F1 and F2 intersect in P = [1, a, 0], i.e. at infinity in the
affine space.
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8.3.2 Points of intersection of projective
lines and curves

February 10, 2011 235 / 257



Tangent in a point

Definition 8.10 Let P = [a, b, c] ∈ CF (F) be a non-singular point
on the projective curve CF (F), i.e. not all partial derivatives vanish
in P . The tangent in P on CF (F) is the line

L

(

δF

δX
(a, b, c),

δF

δY
(a, b, c),

δF

δZ
(a, b, c)

)

February 10, 2011 236 / 257



Multiple zeros

Definition 8.11 Let
P1, P2 ∈ L(a, b, c), P1 = [x1, y1, z1], P2 = [x2, y2, z2]. The
multiplicity of the intersection of L(a, b, c) and CF (F) in P1,
denoted as

m(P,L(a, b, c), CF (F))

is the multiplicity of a zero in t = 0 of the polynomial

g(t) = F (x1 + tx2, y1 + tY2, z1 + z2)
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Multiple zeros cntd.

◮ If P1 is not on CF (F), then g(0) 6= 0, i.e. g(t) has no zero at
0.

◮ In case L(a, b, c) is the tangent in P on CF (F), then

m(P,L(a, b, c), CF (F)) ≥ 2

◮ g(0) = 0
◮ The order of the zero is the smalles exponent of t in g(t).
◮ If all derivatives up the the kth derivative are 0, then the order

is k.
◮ Continue with the chain rule.
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Intersection of a line with an elliptic curve

Theorem 8.12 A projcetive line L(a, b, c) and an elliptic curve
E(F) do not intersect, intersect once, or intersect three times, i.e.

∑

P∈P2(F)

m(P,L(a, b, c), E(F)) = 0 or 1 or 3

Proof idea: case distinction for a and b.
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Intersection of a line with an elliptic curve

Corollary 8.13 The line, that runs through two points on an
elliptic curve, also intersects this curve in a third point.
Corollary 8.14 The tangent in a point on an elliptic curve, also
intersects this curve in another point.
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8.3.3 The group operation
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Intersection points

◮ Let E(F) = C(F) with:

F (X,Y,Z) = Y 2Z+a1XY Z+a3Y Z2−X3−a2X2Z−a4XZ2−a6Z3

Definition 8.15 Let P,Q ∈ E(F)

i) If P 6= Q then let
◮ L1 be the line through P and Q,
◮ R the third intersection point of L1 with E(F), i.e.

E(F) ∩ L1 = {P,Q,R}.
ii) If P = Q then let

◮ L1 be the tangent in P ,
◮ R is the intersection point of L1 with E(F), i.e.

E(F) ∩ L1 = {P,R}.
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Intersection with O

Consider O:

i) If R 6= O then let
◮ L2 be the line through R and O,
◮ S the third intersection point of L2 with E(F), i.e.

E(F) ∩ L2 = {R,O, S}.
ii) If R = O then let

◮ L2 be the tangent in O,
◮ S the intersection point of L2 with E(F), i.e.

E(F) ∩ L2 = {O, S}.
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The operation

Using this we define

S = P +Q, if P 6= Q

S = P + P = 2P, if P = Q

Theorem 8.16 According to Definition 8.15 (E(F),+) is an
abelian group. The neutral element is O.
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8.3.4 Addition formula
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Addition with non-affine points

◮ The only non-affine point is O.

◮ One can easily check

O + P = P

O +O = O

and with P = −Q it holds P +Q = O.
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Limiting addition to the affine part

With the above observation we can now limit the addtion to the
affine part, i.e. to E(F) = Cf (F) with

f(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6

Find explicit coordinates of

◮ P +Q with P 6= Q and P 6= −Q: addition formula,

◮ P + P = 2P : point doubling,

for elliptic curves over

◮ arbitrary fields,

◮ fields F with charF 6= 2, 3.
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Addition formula for affine points in arbitrary fields

Theorem 8.17

i) Let P = (x, y) ∈ E(F). Then

−P = (x,−y − a1x− a3)

ii) Let P1, P2 ∈ E(F), P1 = (x1, y1) and P2 = (x2, y2), s.t.
P1 6= P2 and P1 6= −P2. Then

P3 = (x3, y3) = P1 + P2

with

x3 = λ2 + a1λ− a2 − x1 − x2

y3 = −(λ− a1)x3 − ν − a3

and

λ =
y2 − y1
x2 − x1

ν =
y1x2 − y2x1
x2 − x1
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Addition in arbitrary fields contd.

iii) Let P = (x, y) ∈ E(F). Then

2P = (x′, y′)

with

x′ = λ2 + a1λ− a2 − 2x

y′ = −(λ− a1)x
′ − ν − a3

and

λ =
3x2 − 2a2x+ a4 − a1y

2y + a1x+ a3

ν =
−x3 + a4x+ 2a6 − a3y

2y + a1x+ a3
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Addition formula for affine points in fields with char 6= 2, 3

Theorem 8.18 Let E(F) = Cf (F) with

f(x, y) = y2 − x3 − ax− b

i) Let P = (x, y) ∈ E(F). Then

−P = (x,−y)
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Addition in fields with char 6= 2, 3 contd.

ii) Let P1, P2 ∈ E(F), P1 = (x1, y1) and P2 = (x2, y2), s.t.
P1 6= P2 and P1 6= −P2. Then

P3 = (x3, y3) = P1 + P2

with

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1

and

λ =
y2 − y1
x2 − x1
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Addition in fields with char 6= 2, 3 contd.

iii) Let P = (x, y) ∈ E(F). Then

2P = (x′, y′)

with

x′ = λ2 − 2x

y′ = λ(x− x′)− y

and

λ =
3x2 + a

2y
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Example 1

Let y2 = x3 + 17, P1 = (−1, 4) and P2 = 2, 5.

◮ Line through P1 and P2:

y =
1

3
x+

13

3

This results in:

x3 = −
8

9
and y3 =

109

27

Hence,

P1 + P − 2 =

(

−8

9
,−109

27

)

◮ Tangent on P1:

λ =
f ′(−1)

8
=

3

8
Therefore,

2P1 =

(

137

64
,−2651

512

)
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Example 2

Let y2 = x3 + x+ 1 ∈ F5. One obtains by testing all possibilities

E(F5) = {O, (0,±1), (2,±1), (3,±1), (4,±2)}.

Hence, E(F5) is an abelian group of order 9.

◮ Must be cyclic or the direct product of two groups of order 3.

◮ Decision is made via the group table.

◮ Let P = (0, 1), then

2P = (4, 2), 3P = (2, 1), 4P = (3,−1) etc.

therfore E(F5) is cyclic of order 9.

◮ The points (2,±1) have order 3, all others, except for O have
order 9.
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8.3.5 Further research on elliptic curves
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Further topics with elliptic curves

◮ Avoiding bad curves.

◮ Determining good curves.

◮ Efficient implementation.

◮ Embedding into cryptographic protocols.
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Uses of elliptic curves

◮ Factoring.

◮ Prime number proofs.

◮ Keep your eyes open in all areas of mathematics:
◮ A natural number n is congruent, if it is the area of a right

triangle with rational sides, i.e. there are rational numbers a, b,
and c, s.t.

n =
1

2
ab and a2 + b2 = c2

◮ Fermat: 1,2 and 3 are not congruent.
◮ Fibonacci: 5 and 6 are congruent.
◮ Euler: 7 is congruent.
◮ General result: Tunnell (1983) with elliptic curves.

◮ Fermats Last Theorem: Proven by Wiles(1995) using elliptic
curves.

◮ Further methodes.

◮ Hyperelliptic curves.
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