
Cryptography

Winter 2010/2011

Priv.-Doz. Dr. Adrian Spalka

February 10, 2011

February 10, 2011 1 / 257

Organization

◮ Lecture: Thu, 12:15–13:45, 14:00–14:45, b-it bitmax

◮ Tutorial: Mon, 14:00–15:30, b-it bitmax

February 10, 2011 2 / 257

1. Basics of computer security
1.1 Preliminary considerations

February 10, 2011 3 / 257

Threats due to connection to the internet

◮ Outsourcing of internal processes,

◮ launch of e-commerce,

◮ increasing number of entry points,

◮ numerous external attacks.

Practical damage:

◮ Eavesdropping (theft) and misuse of information,

◮ modification of financial documents,

◮ execution of harmful transactions,

◮ violation of patents and copyrights,

◮ harm to the public image of a company.

=⇒ Without security electronic/mobile-commerce becomes
unprofitable.

February 10, 2011 4 / 257

Applications with need for security

Traditional applications (closed environment):

◮ operating systems,

◮ data bases.

Modern applications (open environments =⇒ internet):

◮ mutual authentication,

◮ exchange and storage of documents and email,

◮ virtual private networks,

◮ trade-/bank-/stock-transactions on the internet
(www-sessions): e/m-commerce,

◮ introduction of electronic medical records,

◮ single sign-on.

February 10, 2011 5 / 257

Risk analysis

Points of attack:

◮ the physical media: physical properties,

◮ the software: central subject of computer security,

◮ the user: social engineering.

Main problem: Design of the internet.

◮ Preferential: interoperability.

◮ Neglected: security.

February 10, 2011 6 / 257

Position of the attacker

1. Outsider: foreign party in the net.
◮ Attacker eavesdrops/manipulates data traffic in the net.

2. Insider: corrupted user as involved party.
◮ User misuses his rights on purpose.

3. Hacker: foreign party directly active on the machine of an
involved party.

◮ Attacker sneaks into the role of the user.

4. Malicious software (virus, worm, trojan, etc.): foreign party
indirectly active on the machine of an involved party.

◮ Program uses the rights of the user without his
knowledge/consent.

February 10, 2011 7 / 257

Threat potential: the reality

Military sector (1996):
◮ more than 500.000 break-in attempts at the US DoD

◮ 10% by red teams, thereof 65% successful and thereof 63%
undetected

◮ implications also for public infrastructure.

Public sector: poll among US-enterprises (2001)
◮ 62% successfully attacked, thereof 55% by an unauthorized

insider,
◮ 51% suffered losses, but only 31% thereof could specify their

loss,
◮ 57% of the attacks over the internet.

Targets and means of attack:
◮ denial of service: 32%, data sabotage: 14%, fraud: 14%,
◮ damages by malicious software: more than USD 15 billion

(USA, 1999),
◮ more than 40.000 webpages with hacker tools,
◮ hacker tools today: automated, usable by non-experts.

February 10, 2011 8 / 257

1.2 A systematic approach

February 10, 2011 9 / 257

Goals of security

◮ Protection of the value that the data in an information system
has.

◮ Is any data without value? BVerfG says “No”:
◮ Sensitivity depends on the context.

February 10, 2011 10 / 257

Methods of security

1. Security policy: programmatic goal approach.
◮ Informal determination of the value and the sensitivity of the

data by declaration of a security level.

2. Security strategy: translation of the security policy into the
context of an information system model.

◮ Declarative specification in the security model.
◮ Detailed administrative regulations.

3. Security tactic: operational realization.
◮ Practical application of a security model in a

computer/network.

February 10, 2011 11 / 257

Ways to evaluate the values in a security policy

◮ Mandatory: determines all values and their protection
requirements bindingly.

◮ Discretionary: determines at who’s discretion the
determination of values and their protection requirements is.

February 10, 2011 12 / 257

Factors for evaluation

◮ Authenticity
◮ Protection from wrong attribution of actions/data,
◮ identification: determination of the identity of a user,
◮ authentication: proof of the claimed identity of a user.

Example: Nobody is allowed to sign on behalf of the boss.

◮ Integrity
◮ Protection from unauthorized modification of data,
◮ detection of unauthorized modification of data.

Example: No employee is allowed to change his salary.

February 10, 2011 13 / 257

Factors for evaluation (continued)

◮ Availability:
◮ Protection from delay of access to data,
◮ providing means for legitimate users to perform operations

according to the rules,
◮ basis of any communication.

Example: A system failure may not exceed 4 hours.

◮ Confidentiality:
◮ Protection from disclosure of data to unauthorized people,
◮ concealing and hiding the intended meaning of data from

unauthorized people.

Example: Intentions to buy may not be disclosed before the
date of acquisition.

February 10, 2011 14 / 257

Determination of values: examples

Area Values Factors

railroad traffic collision freeness of trains integrity

banks protection from fraud integrity

airport tower life of passengers availability/integrity

military success of operations confidentiality

medicine health of patients integrity/ availability/

confidentiality

February 10, 2011 15 / 257

Classification of protection measures for conservation of
values

1. Prevention: should avoid loss of value.
Example: access control and cryptography.

2. Recovery: should recover value afterwards.
Example: records and protocols.

3. Limitation of damage: should limit the loss.
Example: burglar alarms and intrusion detection systems.

Specific countermeasures: depending on the position of the
attacker.

February 10, 2011 16 / 257

Securing the accessibility of resources

in case of overload/monopolization =⇒ restriction of range of use

◮ static/dynamic (workload dependent)/priority-based
assignment of resources on individual basis
=⇒ only applicable, if user identification possible =⇒ not
applicable with anonymous multi-user access (internet!)

in case of partial breakdown =⇒ redundancy

◮ synchronized: RAIDs, multipoint-to-multipoint connections in
the net, tandem processors, etc.

◮ time-delayed: periodic archiving, spare parts, etc.

in case of total breakdown =⇒ external physical measures

◮ protection against power blackout, fire, theft, etc.

February 10, 2011 17 / 257

securing accessibility on the internet

a possible strategy for web-server: request monitoring/session
monitoring

1. limit maximal number of requests/sessions

2. monitor number of requests/sessions continuously
◮ in case of overload: deny requests/sessions with feedback

=⇒ ongoing sessions continue unhampered

3. limit maximal increase of requests/sessions

4. monitor increase of numbers of requests/sessions continously
◮ in case of overload: ignore requests/sessions without feedback

=⇒ ongoing sessions continue with delay
=⇒ hones new users also receive no reply

February 10, 2011 18 / 257

securing integrity

◮ hardware-integrity: modifications of the machine
rounds of inspection

◮ compliance with access routes to data: application-specific
access
access-control of operation system

◮ sanctity of data paths: modification of data stream
cryptographic protocols

◮ user-/program-corruption: misuse of rights
restriction of competences, distribution of powers

◮ semantic integrity: invalid data integrity requirements (mainly
in data bases)

February 10, 2011 19 / 257

securing confidentiality

general problem: precise definition of confidentiality
Question: Do you have an account . . .

◮ . . . at the Sparkasse? (content is confidential)
◮ . . . at the Castle Bank of Nassau? (existence is confidential)

Answers:
◮ Yes.
◮ Maybe./I don’t tell./No comment.
◮ No.
◮ I don’t understand the question.

Approaches to protect confidentiality:
◮ access can be controlled: access restriction

operating systems and closed nets
◮ access can not be controlled: encryption

open nets
◮ Users knows fragments of the environment:

misinformation/uncertainty
(statistical) databases

February 10, 2011 20 / 257

access control

◮ identification: specification of an individual identification
Examples: user-/role-/node-name/id

◮ authentication: confirmation of correctness of identification by:

◮ personal/system-inherent knowledge: e.g. password
advantages: arbitrarily reusable, indestructible
disadvantages: forgettable, spy-able (written down)

◮ personal possession: e.g. smartcard
advantages: arbitrarily reusable, not spy-able
disadvantages: broken, duplicated, forgotten, stolen

◮ personal characteristic (biometry): e.g. finger print, signature,
etc.
advantage: “unforgettable”
disadvantage: not accepted, unreliable, theft/replication of
biometric data, irrevocable, legal concerns

February 10, 2011 21 / 257

allocation of rights

basis of allocation of rights:
trustworthiness of the user or confidentiality/integrity/accessibility
=⇒ considered: explicit assumptions on the user’s behavior
=⇒ often not considered: implicit assumptions on the program’s
behavior
Where has malware been considered?

February 10, 2011 22 / 257

excursion

assumption of modern concepts: resources have to be protected
from users

◮ problem: the legislation requires protection of the user from
certain data

◮ Example: content on the internet which is
unconstitutional/inappropriate for minors

◮ solutions for schools with internet access

February 10, 2011 23 / 257

preemptive danger elimination

◮ verification: verify the trustworthiness of programs, i.e. that a
program:

◮ does not contain undocumented functionality (security)
◮ does have the assured functionality (safety)

◮ global classification of programs as
◮ trustworthy: part of the trusted computing base (TCB):

◮ Is demonstrably trustworthy, i.e. verifiable.
◮ Can not be modified by an unauthorized party.
◮ Can not be by-passed.
◮ Controls all access attempts and decides on their

trustworthiness.

◮ possibly un-trustworthy: all the rest.

◮ GAC: design of a new access control model!

◮ Restriction of distribution of rights of all kind.

◮ Structuring of group environments.

February 10, 2011 24 / 257

Recovery

◮ traceability of actions

◮ attribution to initiator and executor
logging and subsequent evaluation
BUT: legal situation unclear.

February 10, 2011 25 / 257

damage limitation

1. surveillance of running activities

2. alerting on supposed breaches, i.e. on admissible but abnormal
activity patterns
intrusion detectors
=⇒ privacy

February 10, 2011 26 / 257

2. Cryptographic systems
2.1 Introduction

February 10, 2011 27 / 257

Tasks of cryptography

◮ realization of trustworthy computer-based communication- and
information-systems, which use a vulnerable medium or storage

◮ reliable transactions in public networks between careful parties

February 10, 2011 28 / 257

Players in a cryptographic system

◮ desired parties: two or more senders and receivers (Alice and
Bob)

◮ undesired parties:
◮ eavesdropper (Eve)
◮ malicious attacker (Mallory)

February 10, 2011 29 / 257

Assumptions on the desired parties

◮ Alice and Bob may cheat on each other, i.e. there is mutual
mistrust

◮ The computations performed by and the messages sent by
Alice and Bob are intended as such, i.e. the terminal nodes are
trustworthy.

February 10, 2011 30 / 257

The situation

Alice and Bob exchange messages over an insecure channel.

Sender

Alice

Attacker

Sender

Bob
insecure channel

unprotected stream of data

secure channel

protected stream of data

February 10, 2011 31 / 257

The problems

◮ Attacker has unauthorized access to the data on the insecure
channel. He may:

◮ eavesdrop (confidentiality): hide meaning (encryption)
◮ modify (integrity): detect manipulations (digital signatures)
◮ discard (accessibility): bad luck

◮ Alice and Bob cheat on each other: detect fraud (protocols)

February 10, 2011 32 / 257

protecting confidentiality: use of a cryptographic system (cs)

1. Alice uses an encryption function enc,
which maps a message (string) m from the message space M
to a message (string) c from the ciphertext space C:

enc :M→ C,m 7→ c.

2. Alice computes c = enc(m) and sends c to Bob.

3. Bob uses a decryption function dec with the property that
dec(c) = m for all c = enc(m), i.e.

dec : C →M,dec |enc(M) = enc−1 .

In most cases,M, C ⊆ Σ∗, where Σ is a finite set of symbols
(alphabet).
Examples: Σ = {0, 1} or Σ = {A, . . . , Z}

February 10, 2011 33 / 257

basic properties of enc and dec

◮ determining m from c is practically infeasible.

◮ enc and dec are fast and easy to use.

February 10, 2011 34 / 257

possibilities

◮ Keeping enc and dec secret.
Problem: Many people involved until maturity.

◮ Kerckhoff’s Principle: enc and dec are public.
Consequence: extension of enc and dec by a key parameter:

enc(m,k1, . . . , kn) and dec(c, k̃1, . . . , k̃ℓ)

and secrecy of the keys.

February 10, 2011 35 / 257

Scenarios of cryptanalysis

Known are:

◮ only c

◮ some pairs (m, c)

◮ also enc

Relevant for the cryptanalysis

◮ If the message m is redundant with respect to the transmitted
information, then for the recovery of m from c an
incomplete/erroneous reconstruction may be sufficient.
For natural languages this is always the case.

February 10, 2011 36 / 257

2.2 Encryption schemes

February 10, 2011 37 / 257

2.2.1 steganography

The art of “concealed writing”. Hiding the existence of secrets.
plays on words: initial letters of words, parts of the text, etc.

◮ Examples (Richelieu):
◮ encryption: message-text + garbage-in-between-text according

to a template
◮ decryption: template on the ciphertext

laborious encryption.

Tampering of graphic files: BMP/GIF/JPG-format, etc.
Example

◮ size: 2048 x 3072 pixels

◮ 24 bit RGB-data per pixel

◮ The least significant bit of the RGB-data can (mostly) be
manipulated without effect on the image quality.

◮ This enables the hiding of 2.3 MB of data in one image.

February 10, 2011 38 / 257

2.2.2 symmetric encryption

goal: classical protection of confidentiality from eavesdropping.
method: common secret key k for sender and receiver.

◮ encryption: enc(m,k) = c

◮ decryption: dec(c, k) = m

demand: decryption of c is practically only possible with k.

February 10, 2011 39 / 257

2.2.2 symmetric encryption (continued)

disadvantages:

◮ large number of keys and therefore expensive key-management

◮ useless for authenticity

advantages:

◮ confidentiality in closed (maybe large) user base

◮ easily implementable in hardware and fast (100 MB/s and
more)

February 10, 2011 40 / 257

symmetric block ciphers

◮ approach: create confusion, e.g. DES (56 bit key, old) and
AES (128 to 256 bit key, current)

◮ computation: primitive operations, e.g. bit-rotation and
bit-permutation

February 10, 2011 41 / 257

symmetric stream ciphers

◮ encryption of single units (bits/bytes)

◮ enc can modify itself (enc may have states)

◮ less complex than block ciphers and therefore faster

◮ adequate/necessary if no buffer is available/permitted

◮ little/no failure propagation (good for noisy channels)

◮ only few public algorithms
◮ SEAL (software-optimized encryption algorithm, 1993):

customized for 32-bit processors
◮ RC4: not public

February 10, 2011 42 / 257

symmetric stream ciphers (continued)

general course of action

1. common for Alice and Bob:
◮ random number generator Z
◮ secret key k as start value for Z

2. encryption of m = m1 . . . mn

◮ Alice starts Z with k
◮ bits of m are added modulo 2 to the bits zi output by Z, i.e.

XOR
ci = mi + zi mod 2

3. decryption of c = c1c2 . . .
◮ Bob starts with Z with k

mi = ci + zi mod 2.

February 10, 2011 43 / 257

2.2.3 Asymmetric cryptography (public key)

Approach: difficult mathematical problems (one-way trapdoor
functions):

◮ Prime factorization of natural numbers (RSA),

◮ computation of discrete logarithms in finite groups (DL),

◮ computation of quadratic residues in finite groups (QR),

◮ “division of points” on elliptic curves over finite fields (EC).

Computation: complex mathematical operations

February 10, 2011 44 / 257

2.2.3 Asymmetric cryptography (public key) (continued)

procedure: every participant P gets two keys pk and sk:

◮ public key pk for a public “telephone book”

◮ private key sk for his own vault

advantages:

◮ confidentiality, integrity and authenticity in open networks

◮ building block for communication protocols

◮ low number of keys

disadvantages:

◮ slow

◮ authenticity of public keys has to be guaranteed.

vulnerability:

◮ complexity is unknown, i.e. prone to dramatic developments.

February 10, 2011 45 / 257

Asymmetric basis procedure

Participants: P1 = (sk1, pk1) and P2 = (sk2, pk2)

◮ telephone book = (pk1, pk2)

Confidentiality: P1 sends secret message m to P2

◮ encryption by P1: enc(m, pk2) = c

◮ decryption by P2: dec(c, sk2) = m

Requirement: In practice, c can only be deciphered with sk2.
Integrity and authenticity: P1 sends signed message m to P2

◮ signing by P1: sig-gen(m, sk1) = s

◮ sent: (m, s) – received: (m′, s′)

◮ verification by P2: sig-ver(s′, pk1) = m′′

m′′ = m′ =⇒ m = m′ and s = s′

Requirement: In practice, s for m can only be generated with sk1.

February 10, 2011 46 / 257

cryptographic protocols

◮ agreement of session keys

◮ finding duplicate messages

◮ (un-)deniability of sending or receiving of messages

◮ general procedures:
◮ contract signing
◮ random decisions

reliable transactions in closed private networks:

◮ so far well solved with scs
◮ hierarchy of keys
◮ trustworthy special hardware
◮ at least some trustworthy parties
◮ users: banks, business, public administration, governments,

military, etc.

February 10, 2011 47 / 257

division of tasks between scs and acs for encryption

◮ sks are very fast and for medium and large amounts of data
indispensable

◮ acs are very slow and only for small amounts of data useful

=⇒ hybrid systems:

◮ scs encrypts the data

◮ acs encrypts the key (also: session key) of the scs

February 10, 2011 48 / 257

application of crypto systems to signatures (authenticity and
integrity)

◮ infeasible with scs

◮ for free with acs
=⇒ In practice, particularly efficient with EC-acs

February 10, 2011 49 / 257

3. Random numbers
3.1 Introduction

February 10, 2011 50 / 257

Fair coin-flipping protocol

Alice and Bob choose a one-way function f .

1. Alice chooses x, computes f(x) and sends f(x) to Bob.

2. Bob guesses: x even or odd and sends his guess to Alice.

3. Alice answers true or false to Bob.

4. Alice sends x to Bob.

5. Bob computes f(x) and verifies that this value is equal to the
value in 1.

February 10, 2011 51 / 257

Extension of the protocol and applications

◮ Alice chooses one bit at a time and generates a bit vector =>
Encoding of sets.

◮ Games that require randomness:
◮ Card games,
◮ board games.

◮ Consumers of random numbers:
◮ Simulations,
◮ games,
◮ cryptography.

February 10, 2011 52 / 257

Phrasing the requirements

◮ Choose one element at random from a set of n numbers.

◮ Generate a random sequence of length m, which consists of
elements from a finite set, e.g. a random bit string of length
1024.

◮ Clarifications:
◮ All numbers and all sequences consisting of these numbers

already exist - since a long time.
◮ Not the numbers are random, but the process how they are

chosen.
◮ A random number is a number that is chosen at random.

February 10, 2011 53 / 257

3. Random numbers
3.1 Introduction
3.1.1 Approaches to random number generation

February 10, 2011 54 / 257

Hardware based

◮ These approaches make use of presumed randomness in
physical processes.

◮ Examples:
◮ Time in between emission of particles in radioactive decay,
◮ thermal noise of semi conductors,
◮ read access time of hard disks,
◮ sound and image sources.

February 10, 2011 55 / 257

Software based

◮ These approaches make use of presumed randomness in events
occuring during runtime of a computer.

◮ Examples:
◮ System clock,
◮ buffer content,
◮ state or load of system resources.

February 10, 2011 56 / 257

General suggestions

◮ Use several sources as input.

◮ Deskewing (post processing) of the output in order to remove
correlation (next bit) or trend (single bit).

February 10, 2011 57 / 257

3.2 Attempts to define randomness

February 10, 2011 58 / 257

Shannon (1948)

◮ “Father of Information Theory”.

◮ Shannon analyses distributions, that are not ideally random.

◮ He defines randomness as extremum.

◮ A set is perfectly random, if its information content (entropy)
is maximal.

◮ It does not contain redundancy.
◮ Its elements are distributed uniformly.

◮ Conclusion: It is not possible to generate random sequences
from short random initial sequences (seeds).

February 10, 2011 59 / 257

Kolmogorov (1965)

◮ Computability theory.

◮ The complexity of sets is defined via the the shortest program
that generates this set.

◮ A perfectly random set is an extremum.

◮ But:
◮ Kolmogorov complexity is not computable.
◮ It is impossible to generate sets with high Kolmogorov

complexity from short random initial values (seeds).

February 10, 2011 60 / 257

Binary symmetric source - BSS

◮ Ideal source of randomness.

◮ Definition 3.1:
◮ A BSS is a black box, which emits one bit at a time.
◮ All outputs occur with the same probability.
◮ For each output bit the probability that it is 1 or 0 is always 1

2 .
◮ A given sequence of n bits is always generated with probability

1
2n .

◮ This property of the BSS is called uniform distribution.

Problem: In reality - there exists no ideal source of randomness.

February 10, 2011 61 / 257

Blum/Goldwasser/Micali/Yao (1982/1984)

◮ Assumption: Applications that depend on sequences of
random numbers, keep their properties to a large extend when
sequences of pseudo random numbers are used.

◮ Approach: Two objects are called identical, if there exists no
efficient algorithm that can distinguish them.

◮ Result: Randomness is no inherent property of a sequence,
but perception of an observer relative to his computing power.

February 10, 2011 62 / 257

Pseudo random sequences

Definition 3.2

A sequence is pseudo random, if no algorithm running in polynomial
time can distinguish this sequence from a uniform distributed
sequence.

February 10, 2011 63 / 257

Pseudo random number generator - PRNG

Definition 3.3

◮ Let ℓ : N→ N, s.t. ∀n : ℓ(n) > n.

◮ An efficient (deterministic) function f is a PRNG with
streching function ℓ, if for every random n-bit input x,

◮ the output f(x) is of length ℓ(n) and
◮ an efficient algorithm cannot distinguish f(x) from a random

bit sequence of of length ℓ(n).

February 10, 2011 64 / 257

Equivalent Definitions

◮ f is a PRNG if statistical tests running in polynomial time,
cannot distinguish the output of f from a sequence of
uniformly distributed bits, with probability more than 1

2 .

◮ Next-bit test: f is a PRNG, if there exists no algorithm
running in polynomial time, which predicts the next output bit
with probability higher than 1

2 .

February 10, 2011 65 / 257

Requirements for PRNGs

◮ Benefit: A PRNG generates efficient, long, pseudo random
sequences from short random seeds.

◮ Requiremnts for PRNGs:

1. Statistic: Output should look random.
◮ Theoretical definition.
◮ Series of practical tests.

2. Security
◮ Requirement form the BSI (AIS20, 1999): four security levels.

3. Efficiency
◮ The random values should be constructed fast.
◮ The application that depends on the randomness should run in

a user tolerable time.

February 10, 2011 66 / 257

Security levels for PRNGs defined by the BSI

K1 Output should not repeat itself.

K2 Statistical properties of the output should be comparable to
those of an ideal random source.

K3 An attacker observing the output should not be able to predict
previous or future output or worse compute the inner state of
the algorithm.

K4 An attacker knowing the inner state of the algorithm should
not be able to predict previous states or outputs.

February 10, 2011 67 / 257

3.3 Constructions of PRNGs

February 10, 2011 68 / 257

Basic properties

◮ Statistic: Must pass practical tests (K2).

◮ Efficiency: Determined by practical tests and depends on the
requirements of the application.

◮ Security: Theoretic discussions, that aim to achieve the
one-way properties of K3 and K4.

◮ Cryptographic functions in use:
◮ Hash-functions,
◮ symmetric encryption schemes,
◮ asymmetric encryption schemes.

February 10, 2011 69 / 257

Design of a PRNG

Seed
Inner

state

State function

Output function
Output

◮ State function generates a sequence of inner states: I0, I1,

◮ Output function generates a sequence of output values:
A0, A1 . . .

February 10, 2011 70 / 257

Hard-core function

Definition 3.4

Let f be a one-way function. h is a hard-core function of f , if

◮ h can be efficiently computed and

◮ for a random x ∈ {0, 1}∗, f(x)h(x) is a pseudo random
distribution.

February 10, 2011 71 / 257

Hard-core predicate

Definition 3.5

Let f be a one-way function. b is a hard-core predicate of f , if

◮ b can be efficiently computed and

◮ b(x) cannot be efficiently predicted, if x is uniformly
distributed, i.e.

◮ b preserves f ’s property to not be efficiently invertible.

A hard-core predicate is a special case of a hard-core function.

February 10, 2011 72 / 257

Iteration paradigm (Blum/Micali (1984))

Definition 3.6

Let f be an efficient, length-preserving and bijective function. Let b
be a hard-core predicate of f . Then

G(x) = b(x)b(f(x)) . . . b(f ℓ(|x|)−1(x))

is a PRNG with streching function ℓ.

February 10, 2011 73 / 257

Example 1 Blum-Blum PRNG

Let

◮ N = pq, p and q prime and p, q ≡ 3 mod 4. 1

◮ f(x) = x2 mod N , a one-way permutation.

◮ lsb(x) the least significant bit of x.

Then

◮ lsb(x) is a hard-core predicate of f and

◮ G(x) = lsb(x)lsb(x2 mod N) . . . lsb(x2
ℓ(|x|)−1

mod N) is a
PRNG.

In general: A PRNG can be constructed from every one-way
permutation.

1p and q must be selected at random
February 10, 2011 74 / 257

Blum-Blum-PRNG contd.

Input

◮ ℓ, the length of the sequence.

Output

◮ Sequence z1, z2, . . . , zℓ of pseudo random bits.

Algorithm

◮ Pick two primes p and q at random, s.t. p, q ≡ 3 mod 4.

◮ Compute N = pq.

◮ Select at random a seed s with 1 ≤ s ≤ N − 1 and
gcd(s,N) = 1.

◮ Compute x0 = s2 mod N

◮ for i = 1 to ℓ do
◮ xi = x2

i−1 mod N
◮ zi = lsb(xi)

◮ end for.

February 10, 2011 75 / 257

Example 2 RSA Generator

Input

◮ ℓ, the length of the sequence.

Output

◮ Sequence z1, z2, . . . , zℓ of pseudo random bits.

Algorithm

◮ Generate two strong RSA primes p and q.

◮ Compute N = pq.

◮ Compute φ = (p− 1)(q − 1).

◮ Choose e with 1 ≤ e ≤ φ and gcd(e, φ) = 1.

◮ Pick at random an initial value x0 with 1 ≤ x0 ≤ n− 1.

◮ for i = 1 to ℓ do
◮ xi = xe

i−1 mod N
◮ zi = lsb(xi)

◮ end for.

February 10, 2011 76 / 257

Example 3 SHA-1 PRNG

◮ Cryptographic hash function SHA-1 is used as output function.

◮ Inner state consists of 40 bytes, which are initialized with some
seed.

◮ The last 8 bytes are interpreted as counter. The state function
increments the counter by 1.

◮ The SHA-1 value of the inner state is computed (20 bytes).
Output the first 8 bytes as random values.

◮ K3 requirement is met, K4 is not!

◮ Promises high speed, since only one SHA-1 computation is
performed per round.

February 10, 2011 77 / 257

Example 4 SHA-1 RIPEMD

◮ Cryptographic hash functions:
◮ SHA-1 as output function,
◮ RIPEMD-160 as state function.

◮ Inner state consists of 20 bytes, which are initialized with some
seed.

◮ The inner state is advanced by applying RIPEMD-160.

◮ The SHA-1 value of the inner state is computed (20 bytes).
Output all 20 bytes as random values.

◮ K3 and K4 requirements are met.

◮ Two values have to be computed per round.

February 10, 2011 78 / 257

Example 5 Secure Random

◮ Part of the Java cryptography architecture.

◮ Cryptographic hash function SHA-1 as output function and as
part of the state function.

◮ Inner state consists of 20 bytes, which are initialized with some
seed.

◮ Advance to next round: In+1 = In +An + 1 mod 2160.

◮ The SHA-1 value of the inner state is computed (20 bytes).
Output all 20 bytes as random values.

◮ K3 and K4 requirements are met.

◮ Per round only one hash value is computed.

February 10, 2011 79 / 257

Example 6: TripleDES

◮ Symmetric encryption using TripleDES as state function.

◮ Key cannot be hard coded, but is rather part of the inner state.

◮ The key and the initial value for the encryption are determined
from the seed.

◮ The inner state is output and encrypted progressively.

◮ K3 requirement is met, K4 is not met.

◮ Per round one TripleDES computation is performed.

February 10, 2011 80 / 257

Example 7: Secure Rijndael

◮ Instead of TripleDES AES (Rijndael) is used (much faster).

◮ Also the key k is changed kn+1 = kn ⊕An.

◮ Therefore K4 requirement is met.

◮ Problem: Changing the key in Rijndael is quite inefficient.

◮ Solution: Key is only changed every 10 rounds.

◮ Hence, K4 requirement can be met in steps (by loosing
efficiency).

February 10, 2011 81 / 257

3.4 Statistical Tests

February 10, 2011 82 / 257

Monobit test and Poker test

Monobit test

◮ The test is passed, if the number of ones (i.e. the set bits) in a
sequence of 20000 bits is in the interval [9726, 10274].

Poker test

◮ A sequence of 20000 bits is separated in 5000 4-bit segments.

◮ The frequency of occurence of the 16 different segment types
is counted and stored in the variables f(i), i = 0, . . . , 15.

◮ The test is passed if

2.16 ≤ X ≤ 46.17 with X =
16

5000

∑

i=0

(f(i)− 5000)2.

February 10, 2011 83 / 257

Runs test and longruns test

Runs test

◮ run: Sequence of equal bits (zeros or ones).

◮ In a sequence of 20.000 bits the frequency of occurence of
equal runs (same length, same bit value) is counted.

◮ The test is passed if the frequency of occurence is in a given
interval.

Longruns test

◮ The test is passed if no run of length 26 or more exists in a
sequence of 20.000 bits.

February 10, 2011 84 / 257

Continuous test and auto-correlation test

Continuous test

◮ Two consecutive n-bit blocks (n ≥ 16) are compared.

◮ The test fails if they are equal.

Auto-correlation test

◮ This test checks correlations within a generated bit sequence.

◮ A sequence of 10.000 bits b1 . . . b10000 is generated. For
t = 1, . . . , 5000 the following values are computed:

Zt =

5000
∑

j=0

bj ⊕ bj+t.

◮ The test is passed if all Zt are in the interval [2327,2673].

February 10, 2011 85 / 257

Maurer’s universal statistical test and naive compression test

Maurer’s universal test

◮ Detects a very general class of possible errors of a generator.

◮ Basic idea: It should be impossible to compress a sequence of
random numbers (without losing information).

◮ Measure for the compressibility of a random sequence.

Naive compression test

◮ Determine the compression rate (i.e. zip compression).

Careful: Seed contains the entire “randomness”.

◮ Number of possible seeds ≥ number of possible sequences,
keys etc.

◮ A seed of length 160 bits results in at most 2160 outputs.

February 10, 2011 86 / 257

4. Finding primes and
primality testing

February 10, 2011 87 / 257

4.1 The basic algorithm

February 10, 2011 88 / 257

There are infinitely many primes

◮ How to find fast, large primes at random?

◮ Find a prime p in the range B, . . . , 2B − 1, where B is big, say
B ≥ 2100.

◮ Let’s start with the famous theorem of Euclid (about 300BC)
about the number of primes:

Theorem 4.1

There are infinitely many primes.

February 10, 2011 89 / 257

Proof of Euclid’s prime number theorem

◮ Assume the set of primes is finite and we can denote it as
P = {p1, . . . , pk}.

◮ The number p = p1 · p2 · · · pk + 1 is relatively prime to each of
the primes in P .

◮ On the other hand, according to the fundamental theorem of
arithmetic on unique prime factorization, p has some prime
factors.

◮ These prime factors must be in P .

◮ This contradiction proves the theorem.

February 10, 2011 90 / 257

Mersenne primes

◮ Mersenne numbers are of the form Mn = 2n − 1, n ∈ N.

◮ Such a number is not necessarily prime, for example M4 = 15.

◮ When n is composite, then so is Mn.

◮ When searching for Mersenne primes, one may therefore
assume n to be prime.

◮ The largest known prime has almost always been a Mersenne
prime. Why Mersennes?

◮ The way the largest numbers N are proven prime, is based on
the factorizations of either N + 1 or N − 1.

◮ For Mersennes the factorization of N + 1 is as trivial as
possible (a power of two).

◮ The largeset prime known is M43112609 – a number with
12978189 decimal digits.

February 10, 2011 91 / 257

Algorithm for finding primes within the range [B, 2B − 1]

Algorithm 4.1

◮ Input: B ∈ Z≥2

◮ Output: A prime p in the range [B, 2B − 1]

1. Repeat steps 2-3:
2. Choose any (odd) number p in [B, 2B − 1] at random.
3. Test whether p is prime.
4. Until the test accepts p.
5. Output p.

February 10, 2011 92 / 257

Analysis Algorithm 4.1

◮ How long does this take?

◮ Already testing primality of a given number N is a problem.

◮ Testing all possible factors would take about
√
N divisions.

◮ This is beyond the capabilities of any existing computer.

◮ How many primes are there in a specific range?

◮ Maybe none at all?

February 10, 2011 93 / 257

4.2 Probabilistic algorithm

February 10, 2011 94 / 257

A probabilistic algorithm

◮ A little modification allows us to get a satisfactory result:

◮ Do we really need to be absolutely sure that N is prime?

◮ We will content ourselves with a number that is prime with a
choosably small error probability!

◮ We replace the rigid primality test by the following algorithm –
called Fermat Test.

February 10, 2011 95 / 257

Fermat Test

Algorithm 4.2

◮ Input: A number N ∈ Z, and a confidence parameter t ∈ N.

◮ Output: Either ’N is composite’ or ’N is possibly prime’.

1. Repeat t times steps 2-6:
2. Pick at random a from ZN\{0}.
3. Compute g = gcd(a,N).
4. If g 6= 1, then return ’N is composite’.
5. Compute b = aN−1 ∈ ZN .
6. If b 6= 1, then return ’N is composite’.
7. Return ’N is possibly prime’.

February 10, 2011 96 / 257

Analysis of Algorithm 4.2

◮ The Fermat Test fails if it claims ’N is probably prime’ for a
composite number N .

◮ If N is composite the Fermat Test will correclty answer that
’N is composite’.

◮ Consider the case that N is composite.
◮ A number a is called a Fermat witness if aN−1 6≡ 1 mod N

and a Fermat liar otherwise.
◮ If there is at most one witness a with aN−1 6≡ 1 mod N then

at most half of all possible as are liars.
◮ So if there is at least one Fermat witness, then the probability

of failure is small:
◮ The probability that the Fermat Test answers ’N is probably

prime’ under the condition that N is composite is at most 1
2 .

◮ Since we use the Fermat Test t times independently, the failure
probability is at most 2−t.

February 10, 2011 97 / 257

Properties of the repeated Fermat Test

1. If it outputs ’N is composite’, then N is composite.

2. If it outputs ’N is probably prime’, then either there is no
Fermat witness for N , or N is prime with probability at least
1− 2−t.

The last statement can be rephrased: The probability that the test
fails on a composite number N , with a witness is at most 2−t.

February 10, 2011 98 / 257

4.3 Carmichael numbers and further results

February 10, 2011 99 / 257

Carmichael numbers

◮ Composite numbers N without any Fermat witness.

◮ Examples:
◮ 561 = 3 · 11 · 17
◮ 1105 = 5 · 13 · 17
◮ 1729 = 7 · 13 · 19

◮ Alford et al. showed that there are infinitely many Carmichael
numbers.

◮ Problem can be fixed by using ’The strong pseudo primality
test’.

February 10, 2011 100 / 257

Strong pseudo primality test

Algorithm 4.3

◮ Input: A number N ∈ Z.

◮ Output: Either ’N is composite’ or ’N is possibly prime’.

1. Write N − 1 = 2kn, where n is odd.
2. Choose a ∈ ZN at random.
3. Compute b← an mod N .
4. If b ≡ 1 mod N then return ’N is probably prime’.
5. Repeat the following k times:
6. if b ≡ −1 mod N then return ’N is probably prime’,
7. otherwise compute b← b2 mod N .
8. Return ’N is composite’.

February 10, 2011 101 / 257

Correctness of the strong pseudo primality test

◮ Correctness is based on the following two facts:
◮ In a field F , the only elements a with a2 = 1 are a = ±1.
◮ If N is prime then ZN is a field.

◮ Illustration of the strong pseudo primality test:
◮ Choose a = 113.
◮ Three examples:

N N − 1 = 2kn b0 b1 b2 b3 b4 Output

553 23 · 69 407 302 512 22 composite

557 22 · 139 556 1 probably prime

561 24 · 35 56 331 116 67 1 composite

February 10, 2011 102 / 257

Error probabilty of Algorithm 4.3

◮ An integer is squarefree if no square of a prime number divides
it.

◮ Fact 4.2 A Carmichael number is squarefree.

◮ We obtain the following characterization of a Carmichael
number:

N is a Carmichael number

⇔ N is squarefree and ∀p|N, p− 1|N − 1

February 10, 2011 103 / 257

Example

◮ The smallest Carmichael number is N = 561 = 3 · 11 · 17.
◮ N − 1 = 560 = 24 · 5 · 7.
◮ φ(N) = 2 · 10 · 16 = 320.

◮ For any a ∈ Z
×
N , we have a2 = 1 in Z3, a

10 = 1 in Z11, and
a16 = 1 in Z17.

◮ Hence a80 = 1 in Z3,Z11, and Z17, and by the CRT also in
ZN .

◮ Now 80 | 560 = N − 1, so that also aN−1 = 1 in Z
×
N .

February 10, 2011 104 / 257

Properties of the strong pseudo primality test

(i) If N is prime, the test returns ‘probably prime’.

(ii) If N is composite and not a Carmichael number, the test
returns ‘composite’ with probability at least 1/2.

(iii) If N is a Carmichael number, the test returns a proper factor
of N with probability at least 1/2.

(iv) For an n-bit input N , the test uses O(n3) bit operations.

February 10, 2011 105 / 257

Repeating the Algorithm 4.3

◮ The probability that the strong pseudoprimality test answers
incorrectly ‘N is probably prime’ for a composite N is at most
1/2.

◮ When we use this test t times independently, the error
probability is at most 2−t.

Theorem 4.3

The strong pseudo primality test, repeated t times, has the
following properties.

(i) If it outputs ‘N is composite’, then N is composite.

(ii) If it outputs ‘N is probably prime’, then N is prime with
probability at least 1− 2−t.

February 10, 2011 106 / 257

What does it mean when a primality test returns ‘probably
prime’?

◮ Is N then ‘probably prime’?

◮ Of course not: N is either prime or it is not.

◮ ‘probably’ refers to the random choices made within the
algorithm.

◮ If the test is run 1001 times, then it means the following: if N
is not prime, then an event has been witnessed whose
probability is at most 2−1001.

◮ If you fly in an airplane whose safety depends on the actual
primality of such an “industrial-strength pseudoprime”, then
this fact should not worry you unduly, since other things are
much more likely to fail :-)

Note: The strong pseudoprimality test is the algorithm of choice for
testing the primality of a given number N , unless deterministic
security is required.

February 10, 2011 107 / 257

4.4 Finding prime numbers

February 10, 2011 108 / 257

Sieve of Eratosthenes

Algorithm 4.4

◮ Want to find all prime numbers up to a value x.

1. Start with a list (2, 3, 4, ..., x) of all integers up to x.
2. Initially, let p equal 2, the first prime number.
3. Strike from the list all multiples of p less than or equal to x.

(2p, 3p, 4p, etc.)
4. Find the first number remaining on the list after p (this

number is the next prime); replace p with this number.
5. Repeat steps 3 and 4 until p2 is greater than x.
6. All the remaining numbers in the list are prime.

February 10, 2011 109 / 257

Analysis of Algorithm 4.4

◮ This method is old (from about 200 BC) and pretty, but its
running time and space are about x log x 4and look pretty old
in view of cryptographic requirements.

◮ Cryptographic requirements must be polynomial in log x.

◮ The following algorithm finds a large pseudo prime at the
latter cost, in the range required by the RSA crypto system.

February 10, 2011 110 / 257

Algorithm: Finding a pseudo prime

Algorithm 4.5

◮ Input: An integer n and a confidence parameter t.

◮ Output: A number N in the range from 2(n−1)/2 to 2n/2.

1. Set x = 2(n−1)/2.
2. Repeat steps 3 and 4 until some N is accepted.
3. Pick N at random from the set {⌈x⌉, . . . , ⌊

√
2x⌋}.

4. Call the strong pseudoprimality test t times. Input is N and
everytime a new a independently chosen from {1, . . . , N − 1}.
Accept N if and only if all these tests return ‘N is probably
prime’.

5. Return N .

February 10, 2011 111 / 257

Analysis of Algorithm 4.5

◮ In order to find a prime, choose numbers and then test them
until we find a prime.

◮ But if there is no prime in the given range?

◮ Then the algorithm would never stop.

◮ If there are only very few primes, the algorithm would run for a
long time, this is also undesireable.

◮ Good news: There are abundant primes in a given range.

February 10, 2011 112 / 257

Prime number theorem

◮ The prime number theorem says approximately how many
primes there are up to some bound x.

◮ Let π(x) denote the number of primes p with p ≤ x.

◮ Besides π(x), the function pn is also useful. It denotes the nth
prime number, for example p3 = 5.

Theorem 4.4

We have approximately

π(x) ≈ x

lnx
and pn ≈ n ln n.

February 10, 2011 113 / 257

Runtime analysis of the algorithm

Theorem 4.5

On input n ≥ 11 and t, the output of the algorithm is prime with
probability at least 1− 2−t+1 n. It uses an expected number of
O(tn4) bit operations.

February 10, 2011 114 / 257

A word on deterministic prime tests

◮ There exist deterministic prime tests.

◮ The first one running in polynomial time was proposed in 2002
by Agrawal, Kayal and Saxena.

◮ The running time of this test is approximately O(log6(N))
operations, where N is the number to be tested.

February 10, 2011 115 / 257

5. One-way functions and
Hash-functions

February 10, 2011 116 / 257

One way function

Definition 5.1

◮ One-way function f : A→ B.
◮ Linear or polynomial runtime.
◮ A single computer can calculate it in less than 50ms.

◮ f−1(y) = x cannot be computed in practice for most randomly
selected values.

◮ At least exponential runtime or NP -complete.
◮ Cannot be computed in 1000 years, even if all computers in

the world work on this task.

February 10, 2011 117 / 257

Applications of one-way functions

◮ First used by R.M. Needham and Wilkes in 1968:
◮ Storage of encrypted passwords.
◮ Example of Purdy (1974):

f : Z/pZ→ Z/pZ with p = 264 − 59

f(x) = x224+17 + a1x
224+3 + a2x

3 + a3x
2 + a4x+ a5, ai ≈ 1019

February 10, 2011 118 / 257

Applications of one-way functions contd.

◮ Cryptographic Hash-functions,

◮ pseudo random number generators,

◮ secret sharing,

◮ zero-knowledge proofs.

February 10, 2011 119 / 257

5.1 Cryptographic Hash-functions

February 10, 2011 120 / 257

Cryptographic Hash-function

Definition 5.2

◮ A one-way function f with:
◮ Result f(x) = y has constant length.
◮ Second preimage resistant: For a given value v it is practically

impossible to compute a different value w, s.t. f(v) = f(w).
◮ Collision free: It should be difficult to find two different values

v and w, such that f(v) = f(w).

February 10, 2011 121 / 257

Widely used Hash-functions

◮ Message Digest, MD2, MD4, MD5 (weak),

◮ Secure Hash Algorithm 1, SHA-1: 160-bit Output,
NIST-Standard (weak),

◮ SHA-2 family: SHA-224/512 (good).

February 10, 2011 122 / 257

Example SHA-256

◮ Input: Document with up to 264 bit length.

◮ Input is processed in 512 bit blocks. Document might need
padding.

◮ Output: 256 bit message digest.

February 10, 2011 123 / 257

5.2 One-way functions for asymmetric
crypto systems

February 10, 2011 124 / 257

One-way functions for asymmetric crypto systems

Definition 5.3

◮ Let a and b be two numbers (keys),

◮ m be the plaintext, and

◮ f(a,m) = c the ciphertext.

Then f is a one-way trapdoor function, if

◮ every function g in a and c with g(a, c) = f−1 cannot be
computed in practice, i.e. f cannot be inverted knowing only
public information.

◮ There exists a function h(a, b, c) = f−1 (also with b as a
parameter), which can be easily computed, i.e. f can be easily
inverted knowing some secret.

February 10, 2011 125 / 257

6. RSA

February 10, 2011 126 / 257

Basic idea

◮ It is easy to find to large primes p and q and to compute
N = pq.

◮ It is hard to factor N .

February 10, 2011 127 / 257

6.1 Theoretical Foundations

February 10, 2011 128 / 257

Euler’s ϕ-function

Definition 6.1 Euler’s ϕ-function

◮ For N ∈ N we have

ϕ(N) = N
∏

p|N

(1− 1

p
)

where the p are distinct.

February 10, 2011 129 / 257

Carmichael λ-function

◮ For p = 2 and m = 2

λ(22) = ϕ(22) = 2

◮ For p = 2 and m ≥ 3, m ∈ N

λ(2m) =
1

2
ϕ(2m)

◮ For all primes p ≥ 3, m ∈ N

λ(pm) = ϕ(pm) = pm − pm−1

◮ For N = pm1
1 pm2

2 . . . pmk

k

λ(N) = lcm(λ(pm1
1), λ(pm2

2), . . . , λ(pmk

k))

February 10, 2011 130 / 257

Summary

◮ Now we have for all m,N ∈ N, m,N coprime:
◮ Theorem of Euler: mϕ(N) ≡ 1 mod N .
◮ Theorem of Carmichael: mλ(N) ≡ 1 mod N .

◮ Let N = p1p2 . . . pk, pi distinct, then we have for all m ∈ N

mλ(N)+1 ≡ m mod N

and for all k ∈ N

mkλ(N)+1 ≡ m mod N.

◮ Let N = pq, p and q prime, p 6= q, and k,m ∈ N then we
obtain an important formula for RSA:

m ≡ mk(p−1)(q−1)+1 mod N.

February 10, 2011 131 / 257

6.2 Construction of the RSA one-way
function

February 10, 2011 132 / 257

Setup

◮ N = pq with p, q prime and p 6= q.

◮ e ∈ N with e > 1 and gcd(e, λ(N)) = 1.

◮ enc(m, (e,N)) ≡ me mod N with m < N , m ∈ N.

◮ d ∈ N with de ≡ 1 mod λ(N), i.e. mde ≡ m mod N for all
m ∈ N.

◮ dec(c, (d,N)) ≡ cd mod N with c ∈ N and c < N .

February 10, 2011 133 / 257

Properties

◮ enc(m, (e,N)) and dec(c, (d,N)) are easy to compute.

◮ d can be easily computed from p and q or from λ(N).

◮ It is hard to compute dec(c, (d,N)) without knowledge of d.

◮ dec = enc−1

⇒ enc(m) is a one-way function with trapdoor d.

February 10, 2011 134 / 257

Usage of RSA

◮ Most important task for using RSA in practice is to find large
prime numbers.

◮ Today, the largest threat for RSA is the development of
efficient algorithms for factoring integers.

February 10, 2011 135 / 257

6.3 Generating RSA keys

February 10, 2011 136 / 257

Step 1 and 2

1. Select two primes p and q, s.t.:
◮ p and q are sufficiently large.
◮ |p− q| large, but not too large. IEEE P1363 suggests

1
2 < |log2p− log2q| < 30.

◮ p ≡ −1 mod 12 and q ≡ −1 mod 12.
◮ p1 = 1

2 (p− 1), q1 = 1
2 (q − 1), 1

12 (p+ 1) and 1
12 (q + 1) are

prime as well.

2. Compute N = pq and z = 2p1q1.

February 10, 2011 137 / 257

Steps 3 and 4

3. Select at random e ∈ N, such that:
◮ gcd(e, z) = 1.
◮ e− 1 is neither a multiple of p1 nor q1.

4. Compute – using the Extended Euclidean Algorithm – d and
z′, s.t.:

◮ 0 < d < z,
◮ de+ zz′ = 1.

February 10, 2011 138 / 257

Steps 5 to 7

5. Destroy p, q, z and z′.

6. Keep S = d secret (secret key).

7. Publish P = (e,N) (public key).

February 10, 2011 139 / 257

Selecting RSA primes

◮ Let n be the bit length of N .

◮ Use the strong pseudo prime algorithm with a confidence
parameter t = ⌈log2(2n)⌉+ s.

◮ Then the algorithm returns a prime with probability at least
1− 2−s and it uses an expected number of O((s+ logn)n4)
bit operations.

◮ With s = 20 + log2n the probability of failure is at most
0.000001/n and we expect O(n4logn) operations.

February 10, 2011 140 / 257

RSA efficiency

Find n/2-bit primes at random O(n4 logn),

Calculate d from e O(n2),

Calculate powers modulo N O(n3).

Altogether the key generation can be done in time O(n4), and the
encryption in RSA of one plaintext block needs O(n3) bit
operations.

February 10, 2011 141 / 257

6.4 Confidentiality with RSA

February 10, 2011 142 / 257

Encryption

◮ Alice sends a secret message m to Bob.

◮ Encryption by Alice:

1. Represent plaintext as m ∈ N.
2. Divide m = . . .mi . . . in blocks, with mi < NB.
3. Encrypt every mi with PB = (eB, NB), the public key of Bob:

enc(mi, PB) = meB
i mod NB = Ri.

4. Send Ri to Bob.

February 10, 2011 143 / 257

Decryption

◮ Decryption by Bob:
◮ Decrypt every Ri with SB = dB , his secret key:

dec(Ri, SB) = RdB

i mod NB = mi

February 10, 2011 144 / 257

6.5 Integrity and authenticity with RSA

February 10, 2011 145 / 257

Signing

◮ Alice signs a message m and sends it to Bob.

◮ Signing by Alice:

1. Represent message as m ∈ N.
2. Choose a hash-function h and compute:

m̄ = h(m)

3. Separate m̄ in blocks, with m̄i < N , if necessary.
4. Sign m̄ with SA = dA, her secret key:

sig-gen(m̄, SA) = m̄dA mod NA = σ.

5. Send (m,σ) to Bob.

February 10, 2011 146 / 257

Verification

◮ Verification by Bob:

1. Receives (m,σ).
2. Computes – using the shared hash function:

m̄ = h(m).

3. Separate m̄ in blocks, with m̄i < N , if necessary.
4. Verifies the signature with PA = (eA, NA), with the public key

from Alice.

sig-ver(σ, PA) = σeA mod NA = m̄′

◮ The verification is successful if m̄ = m̄′, then we can be sure
about integrity and authenticity.

◮ Otherwise: Discard message and signature.

February 10, 2011 147 / 257

6.6 Computing the secret key and factoring the
modulus are equally hard

February 10, 2011 148 / 257

Proof - Part 1

◮ Given p and q, the factors of N . Find d.

◮ Since we know e, the public key, we can easily compute d by
solving:

de ≡ 1 mod (p− 1)(q − 1)

February 10, 2011 149 / 257

Proof - Part 2

◮ Let d be known. Find p and q. From de ≡ 1
mod (p− 1)(q − 1), we know there is some k ∈ Z, such that
ed− 1 = k(p − 1)(q − 1).

◮ We know for all a ∈ Z
∗
N

aed−1 ≡ 1 mod N

◮ Let ed− 1 = 2st with t = 2i+ 1.

◮ Then for about half the elements a ∈ Z
∗
N we have:

a2
s−1t 6≡ ±1 mod N

◮ For an a that fulfills the above equation we have that
gcd(a2

s−1t, N) is a proper factor of N .

◮ Choose some a ∈ Z
∗
N and compute gcd(a2

s−1t, N).

In general: Every method, which can compute φ(N) or d, can also
factor N .

February 10, 2011 150 / 257

6.7 Attacks on RSA

February 10, 2011 151 / 257

Homomorphic properties

◮ Encryption of products, without knowledge of factors:

me
1m

e
2 mod N = (m1m2)

e mod N = R1R2

February 10, 2011 152 / 257

Forging signatures

◮ Let σ1 = md
1 mod N and σ2 = md

2 mod N be public.

◮ The attacker computes:
◮ σ1σ2 mod N = md

1m
d
2 mod N = (m1m2)

d mod N ,
◮ σ−1

1 = (md
1)

−1 mod N = (m−1
1)d mod N ,

◮ −σ1 = −(Ld
1) mod N = (−m1)

d mod N .

◮ Most of the time m1m2 does not make sense for language, but
it can be useful for numbers.

◮ Fix: insert redundancy (human semantics).

February 10, 2011 153 / 257

Adaptive chosen ciphertext attack

◮ Attacker Charlie wants to decrypt a message R = me mod N
which was meant for Alice.

◮ Alice decrypts messages – except R – chosen by Charlie and
shows him the outcome.

◮ Charlie chooses x ∈ Z
∗
N and computes R1 = Rxe mod N .

◮ Alice computes for Charlie m1 = Rd
1 mod N .

◮ We get
m1 ≡ Rd

1 ≡ Rd(xe)d ≡ mx mod N.

◮ So Charlie can compute the message R.

February 10, 2011 154 / 257

Using the same small exponent e for several users

◮ Let for example e = 3 (for best performance this is even
recommended).

◮ If we have three participants with different modulus and the
same plaintext we have:

◮ R1 = m3 mod N1

◮ R2 = m3 mod N2

◮ R3 = m3 mod N3

◮ Then by applying the Chinese Remainder Theorem we get:

R = m3 mod N1N2N3 = m3.

◮ A suggested solution: split messages in shorter blocks and pad
with random values.

February 10, 2011 155 / 257

Using the same modulus for several users

◮ Knowledge of one pair (e0, d0) allows factoring N .

◮ Then all pairs (ek, dk) can be computed.

⇒ Everybody can read all messages - despite having different keys.

February 10, 2011 156 / 257

Decryption of algebraically “related” messages

◮ Choose for example e = 3.

◮ Consider

R1 = m3 mod N and R2 = (m+ 1)3 mod N

◮ Then it holds:

R2 + 2R1 − 1

R2 −R1 + 2
=

(m+ 1)3 + 2m3 − 1

(m+ 1)3 −m3 + 2
=

3m3 + 3m2 + 3m

3m2 + 3m+ 3
= m

February 10, 2011 157 / 257

Fixpoint attack

◮ Let o be the order of e in Z

λ(N)Z . Then it holds that

eo ≡ 1 mod λ(N)

◮ and for all messages m it holds

meo ≡ m mod N.

◮ Solution: pick e with large order.

February 10, 2011 158 / 257

Wiener’s attack on short secret keys

◮ Small d can be found in polynomial time by using partial
fraction decomposition.

◮ Solution: the length of d and N should be about the same.

February 10, 2011 159 / 257

Conclusion

◮ None of the above mentioned attacks is dangerous if RSA is
used with the recommended protection mechanisms.

◮ At the moment: Only advances in developing efficient
factoring algorithms cause pressure.

February 10, 2011 160 / 257

7. Foundations of asymmetric
crypto systems based on
groups

February 10, 2011 161 / 257

Basis for asymmetric Cryptosystems

◮ A finite cyclic abelian group G with prime order |G| and a
generator g ∈ G.

◮ If the order of |G| is not prime then a prime order subgroup H
of G is selected.

◮ The notation of the group operation is sometimes written
multiplicativly and sometimes additivly – depending on the
context.

Basis for elliptic curve asymmetric crypto systems

◮ The additive group of points on an elliptic curve.

February 10, 2011 162 / 257

Properties of G for asymmetric crypto systems

◮ Multiplication/exponentiation is easy.

◮ Inverse operation (division/ computing logarithms) is hard.

◮ It is possible to generate elements in G that are distributed
close to uniform.

February 10, 2011 163 / 257

Dicrete log problem (DLP)

Definition 7.1:

◮ Let G be a finite group.

◮ Given g, h ∈ G, find the smalles n ∈ N, if one exists, such that
gn = h

February 10, 2011 164 / 257

7.1 Cryptosystem based on the discrete log
problem

February 10, 2011 165 / 257

General rule

◮ If it is possible to break a crypto system in G then all other
crypto systems working in G are insecure as well.

February 10, 2011 166 / 257

Diffie-Hellman key exchange

Goal:

◮ Alice and Bob want to chose a random element from G as
their secret.

Prerequisites:

◮ Public: group G and an element g ∈ G with large order.

February 10, 2011 167 / 257

Diffie-Hellman key exchange cntd.

Method:

i) Alice generates a ∈ [1, |G| − 1] and sends x = ga to Bob.

ii) Bob generates b ∈ [1, |G| − 1] and sends y = gb to Alice.

iii) Alice computes ya = (gb)a = gab.

iv) Bob computes xb = (ga)b = gab.

=⇒ gab is only known to Alice and Bob.

February 10, 2011 168 / 257

Attack (Diffie-Hellman problem, DHP

◮ Evesdropper Eve knows: G, g, x = ga and y = gb.

◮ If Eve can compute gab, then she has solved the DHP in G.

◮ It is conjectured (e.g. by Maurer (1994)) that for most groups
used in cryptography the DHP and the DLP is equivalent.

February 10, 2011 169 / 257

ElGamal encryption(1985)

Goal:

◮ Alice wants to send to Bob the message m ∈ G in a
confidential way.

Prerequisites:

◮ Public: Group G and some element g ∈ G with large order.

◮ Secret key of Bob: b ∈ [1, |G| − 1].

◮ Public key of Bob: B = gb.

February 10, 2011 170 / 257

ElGamal encryption cntd.

Method:

i) Alice generates a random a ∈ [1, |G| − 1].

ii) She computes x = ga and c = Bam, and sends (x, c) to Bob.

iii) Bob computes
cx−b = Bam(ga)b = (gb)am(ga)−b = gab−abm = m.

February 10, 2011 171 / 257

ElGamal Signatures (1985)

Goal:

◮ Bob signs a message m ∈ Zd.

Prerequisites:

◮ Public: Group G and some element g ∈ G with large order d.

◮ Public: f : G→ Zd, bijective.

◮ Secret key of Bob: b ∈ Zd.

◮ Public key of Bob: B = gb.

February 10, 2011 172 / 257

ElGamal Signatures cntd.

Method:

i) Signing by Bob:

a) Generates a random k ∈ Z
×

d .
b) Computes K = gk.
c) Solves:

kσ + bf(K) ≡ m mod d

for σ ∈ Zd.
d) Sends (m,K, σ) to Alice. The signature of m is (K,σ).

ii) Alice computes:
z = Bf(K)Kσ =

and verifies z = gm?

February 10, 2011 173 / 257

Digital signature according to DSA without Hash-function

DSA: Digital Signature Algorithm.

◮ Motivation: Speed up the verification of the digital signature
based on ElGamal.

◮ Goal and prerequisites as above.

February 10, 2011 174 / 257

DSA cntd.

Method:

i) Signing by Bob:

a) Generates a random k ∈ Z
×

d .
b) Computes K = gk.
c) Solves:

−bf(K) + σk ≡ m mod d

for σ ∈ Zd.
d) Sends (m,K, σ) to Alice. The signature of m is (K,σ).

February 10, 2011 175 / 257

DSA cntd.

ii) Verification by Alice:

a) u = mσ−1

b) v = f(K)σ−1 mod d

c) w = guBv = gmσ−1

gvb = gmσ−1+bf(K)σ−1

= gσ
−1(m+bf(K))

d) Verify if w = s.

Advantage: Verification via two exponentiations in G, ElGamal
needs three.

February 10, 2011 176 / 257

Encryption due to Massey-Omura

◮ Rarely used, but very elegant.

Goal:

◮ Alice wants to send a message m to Bob in a confidential way.

Prerequisites:

◮ Public: group G with large order.

February 10, 2011 177 / 257

Massay-Omura cntd.

Method:

i) Alice generates at random a ∈ [1, |G| − 1] with gcd(a, |G|) = 1
and sends to Bob x = ma.

ii) Bob generates at random b ∈ [1, |G| − 1] with gcd(b, |G|) = 1
and sends to Alice y = xb = mab.

iii) Alice sends z = ya
−1

= maba−1
= mb.

iv) Bob computes zb
−1

= mbb−1
= m

February 10, 2011 178 / 257

Digital Signatures according to Nyberg-Rueppel (1996)

Properties:

◮ A series of signature schemes with message recovery.

◮ Difference to ElGamal: Message is m ∈ G.

◮ In the lecture we look at the variant of Piveteau (1993),
without message recovery.

Goal:

◮ Bob signs a message m ∈ G.

February 10, 2011 179 / 257

Nyberg-Rueppel cntd.

Prerequisits:

◮ Public: Group G and g ∈ G with large order.

◮ Public: f : G→ Z/ |G|Z, bijective.

◮ Secret key of Bob: b ∈ [1, |G| − 1] with gcd(b, |G|) = 1.

◮ Public key of Bob: PB = gb.

February 10, 2011 180 / 257

Nyberg-Rueppel cntd.

i) Signing by Bob:

a) Generates a random k ∈ [1, |G| − 1] with gcd(k, |G|) = 1.
b) Computes s = mg−k.
c) Solves:

1 ≡ bf(s) + tk mod |G|
for t ∈ [1, |G| − 1].

d) Sends (m, s, t) to Alice. The signature of m is (s, t).

ii) Verification by Alice:
◮ Compute

P
−f(s)
B st = gtk−1−tkmt = z

◮ Check z = mtg−1.

February 10, 2011 181 / 257

Reduction of problems

◮ It is always conjectured, but there is no proof that breaking
one of the above schemes also breaks RSA.

◮ There is no proof that breaking RSA is equivalent to factoring
the modulus. In fact, Boneh/V enkatesan(1998) back up the
conjecture that this is not the case.

◮ DHP = DLP can only be proven for some special cases.

February 10, 2011 182 / 257

The function f : G→ Z/ |G|Z

◮ Using g = F
×
p , f is canonical.

◮ For other groups one can weaken the condition that f has to
be bijective. We can look for a set M , with about the same
order as G, |G| ∼ |M |, such that

f : G→ Z/ |M |Z

is almost injective.

February 10, 2011 183 / 257

Usage of f in Elliptic curve cryptography

◮ (x, y) are coordinates of points, but only x is inserted into f .

◮ Using G = Fp, p prime |G| ∼ p is chosen and x ∈ Fp is
considered an integer.

◮ Using G = F , F a field with char(F) = 2, i.e. F = F2n , x
has to be denoted as integer as well. In practice x is
considered a basis of F2n over F2 and the coordinates of x are
digits of a binary number.

February 10, 2011 184 / 257

7.2 Groups for asymmetric crypto systems

February 10, 2011 185 / 257

DLP today

The presented crypto schemes are based on arbitrary abelian
groups, but for implementation simple operations are required, e.g.
a simple algebraic expression.
DLP today

◮ Easily solvable in additive subgroups of finite fields.

◮ Not solvable on elliptic curves over finite fields.

◮ Usually for crypto systems the group F
×
p over large p is

considered.

◮ DLP can be solved in F
×
p in subexponential time (McCurley

(1990) and Adleman (1994)). Methods are based on ideas of
factoring with number field sieves (Lenstra (1993)).

February 10, 2011 186 / 257

Increasing complexity using number theory

◮ Replace F
×
p by E(Fp), the set of rational points on an elliptic

curve in Fp.

◮ Result: DLP in the additive group E(Fp) is several orders of
magnitude harder that DLP in the multiplicative group F×

p of
same order.

February 10, 2011 187 / 257

7.3 Comparison of key lengths

February 10, 2011 188 / 257

Time complexity

◮ DLP in E(Fq): exponential to n = log2 q

◮ DLP in F
×
p subexponential to N = log2 p

Key length in elliptic curve crypto systems grows proportional to
the 3. root of the key length in conventional crypto systems.

February 10, 2011 189 / 257

Comparison of key length

AES RSA/DLP ECC/DLP

80 1024 160

112 2048 224

128 3072 256

192 8192 384

256 15360 512

Complexity of implementation

◮ The operation in E(Fq) is more complex than in F
×
p :

otherwise there is no difference.

February 10, 2011 190 / 257

8. Elliptic curves in finite
fields
8.1 Projective geometry

February 10, 2011 191 / 257

Introduction

◮ Content: properties of structures that do not change during
projection.

◮ Relation to elliptic curves: results in an additional point, which
is important for the group definition.

◮ History:
◮ da Vinci, Dürer, 15th century: study of perspective in

paintings.
◮ Monge, 18th century: descriptive geometry (forms of

projections).
◮ Poncelet, 19th century: Projective geometry.

◮ Observation:
◮ In images of the central projection parallel lines intersect.
◮ The difference between parallel and intersecting lines is lost.

February 10, 2011 192 / 257

Idea: Consider artificial elements

q Q1 Q2 Qp Q3

p

Pq

P3

P2

S

P1

February 10, 2011 193 / 257

Artificial points

◮ Consider a line p.

◮ Select a second line q and a point S, the auxiliary point, which
neither lies on p nor q.

◮ Draw lines through S: Qi is is the point on q that was
projected by Pi on p.

◮ Relating Pi to Qi is bijective, except for points Pq and Qp.

◮ Define:
◮ the point Qp on q has an image on p: the artificial point P∞.
◮ the point Pq on p has an image on q: the artificial point Q∞.

February 10, 2011 194 / 257

Artificial points cntd.

◮ Qp is reached, if one follows the line p in both directions.

◮ With Qp, p becomes a closed line in the projection.

◮ Every line has only one artificial point.

◮ In projections it does not make sense to distinguish inner and
outer points for line segments.

◮ Instead for a pair of points we say:
◮ they divide each other, e.g. (P1, P3) or (P2, Pq) or
◮ they do not divide each other, e.g. (P1, Pq) or (P2, P3) .

February 10, 2011 195 / 257

Distinguish using artificial points

◮ Consider an additional line r in the image.
◮ If p and r are parallel, then r has also the artificial point P∞

(Qp in the projection onto q).
◮ In case p and r intersect, then r has an artificial point different

from P∞ (Qr in the projection onto q).

◮ The images of all parallel lines intersect in one point during a
central projection from one plane into an inclined plane.

i) The artificial point depends only on the direction of the line
and can be associated with the direction.

ii) The artificial point is considered as a regular point of a
projective line.

iii) P∞ and Q∞ determine the artificial line:
◮ the set of artificial points of all lines,
◮ the set of all intersections of parallel lines.

In general two lines intersect in the projective plane in exactly one
point.

February 10, 2011 196 / 257

8.1.1 Projective coordinates on a line

February 10, 2011 197 / 257

Projective coordinates

Problem:

◮ the position of a point on an affine line is determined by a
coordinate. The coordinate depends on the choice of the
origin and the unit line segment.

◮ Affine maps between lines preserve the coordinate ratios of
original and image points, respectively.

Solution: projective coordinates.

February 10, 2011 198 / 257

Approach

February 10, 2011 199 / 257

Approach cntd.

◮ Consider the line p in the plane M , i.e. a structure in the next
dimension.

◮ Select a basis on M with two linearly independent vectors sa
and sb and a point S not lying on p as the origin.

◮ A unique line with the auxiliary point S is assigned to every
point P on p.

◮ Therefore P is uniquely determined by the coordinates (a, b) of
a vector

s = asa + bsb.

February 10, 2011 200 / 257

Approach contd.

◮ With every k 6= 0 also (ka, kb) determine the point P .

◮ (a, b) are called the homogeneous coordinates of P .

◮ The points A(1, 0) and B(0, 1) on p are the basic points and
E(1, 1) is the unit point on p corresponding to the basis M .

◮ The homogeneous coordinates of P∞ are determined by the
slope of p.

February 10, 2011 201 / 257

8.1.2 Algebraic approach in the projective
plane

February 10, 2011 202 / 257

Affine Space

Definition 8.1 Let F be a field then

◮ A1(F) = {(a)|a ∈ F} is the one dimensional affine space over
F.

◮ A2(F) = {(a1, a2)|a1, a2 ∈ F} is the two dimensional affine
space over F.

February 10, 2011 203 / 257

Homogeneous coordinates

Definition 8.2 Let ai, bi, t ∈ F, t 6= 0,

◮ (a1, . . . , ak) and (b1, . . . , bk) are homogeneously equivalent
[a1, . . . , ak] ∼ [b1, . . . , bk] if ai = tbi.

◮ The one dimensional projective space over F, i.e. the
projective line, is

P1(F) = {[a1, a2]|(a1, a2) 6= (0, 0)}

[a1, a2] are the homogeneous coordinates of a point on P1(F).

◮ The two dimensional projective space over F, i.e. the
projective plane, is

P2(F) = {[a1, a2, a3]|(a1, a2, a3) 6= (0, 0, 0)}

[a1, a2, a3] are the homogeneous coordinates of a point on
P2(F).

◮ The homogeneous coordinates [a1, . . . , ak] are normalized, if
a1, . . . ak are coprime.

February 10, 2011 204 / 257

Geometric and algebraic considerations

◮ Geometrically speaking one can consider P2 as the affine
space in addition with the set of directions, i.e.

P2 = A2 ∪ {set of directions in A2}.

◮ Algebraically, one considers the maps

µ : A2(F)→ P2(F)

(a, b) 7→ [a, b, 1]

v : F→ P2(F)

a 7→ [a, 1, 0]

as well as the point [1, 0, 0].

◮ The map µ embeds the affine space canonically into the
projective space.

◮ The map v captures with the base field all affine directions.

◮ [1, 0, 0] is the artificial point of the direction line.

February 10, 2011 205 / 257

Geometric and algebraic considerations

◮ It holds that

P2(F) = µ(A2(F)) ∪ v(F) ∪ {[1, 0, 0]}

or simply P2 = A2 ∪P1.

February 10, 2011 206 / 257

8.1.3 The line in the plane

February 10, 2011 207 / 257

The line in the plane

◮ Line L in the affine plane:
Set of zeros of

f(x, y) = ax+ by + c with (a, b) 6= (0, 0) in A2(F),

i.e. the affine coordinates

L = {(x, y) ∈ A2(F)|f(x, y) = 0}

◮ Line L in the projective plane:
Set of zeros of

F (X,Y,Z) = aX+bY +cZ with (a, b, c) 6= (0, 0, 0) in P2(F),

i.e. the homogeneous coordinates

L = {(X,Y,Z) ∈ P2(F)|F (X,Y,Z) = 0}

February 10, 2011 208 / 257

Projective case

◮ For the projective line we have
F (tX, tY, tZ) = tF (X,Y,Z), t 6= 0, i.e. with [X,Y,Z] ∈ L
also [tX, tY, tZ] ∈ L.

◮ To consider projective solutions of polynomials – i.e. in order
to tell that [X,Y,Z] is a solution – with zero (X,Y,Z) also
(tX, tY, tZ) for all t 6= 0 must be a zero.

February 10, 2011 209 / 257

Homogeneous polynomial

Definition 8.3 A polynomial F (X,Y,Z) =
∑

arX
iY jZk of

degree d is called homogeneous if always i+ j + k = d for all
ar 6= 0.
A homogeneous polynomial fulfills

F (tX, tY, tZ) = tdF (X,Y,Z),

i.e. it is possible to consider its solutions in the projective plane.

February 10, 2011 210 / 257

8.1.4 Plane curves

February 10, 2011 211 / 257

Singular points

Definition 8.4 Let f ∈ F[x, y] be a polynomial over the field F.

◮ The zeros of f(x, y) define an affine plane curve

Cf (F) = {|(x, y) ∈ A2(F)|f(x, y) = 0}

◮ (a, b) ∈ A2(F) is a singular point of Cf (F),if
◮ (a, b) is a point on Cf (F), (a, b) ∈ Cf (F), i.e. f(a, b) = 0.
◮ Both derivatives of f vanish in (a, b), i.e.

δf

δx
(a, b) =

δf

δy
(a, b) = 0

◮ Cf (F) is singular over F, if it has a singular point
(a, b) ∈ A2(F) .

◮ Cf (F) is non-singular if it has no singular point, even over the
algebraic closure.

February 10, 2011 212 / 257

Singular point - homogeneous case

Definition 8.5 Let F ∈ F[X,Y,Z] be a homogeneous polynomial
over the field F.

◮ The zeros of F (X,Y,Z) define a homogeneous plane curve

CF (F) = {[X,Y,Z] ∈ P2(F)|F (X,Y,Z) = 0}

◮ [A,B,C] ∈ P2(F) is a singular point of CF (F), if
[A,B,C] ∈ CF (F) and

δF

δX
(A,B,C) =

δF

δY
(A,B,C) =

δF

δZ
(A,B,C) = 0

February 10, 2011 213 / 257

Moving affine to projective coordinates

◮ Let f ∈ F[x, y]. With

x =
X

Z
and y =

Y

Z

we move f(x, y) into its homogeneous form F (X,Y,Z).

February 10, 2011 214 / 257

8.2 Elliptic curves

February 10, 2011 215 / 257

Elliptic curve in homogeneous form

Definition 8.6 Let F be a field and

F (X,Y,Z) = Y 2Z+a1XY Z+a3Y Z2−X3−a2X2Z−a4XZ2−a6Z3

be a homogeneous polynomial of degree 3 with
a1, a2, a3, a4, a6 ∈ F. In case the projective curve

CF (F) = {[X,Y,Z] ∈ P2(F)|F (X,Y,Z) = 0}

is non-singular, then CF (F) is an elliptic curve in homogeneous
form.
The Weierstraßequation of CF is

C : Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + aZ6 3

February 10, 2011 216 / 257

The point at infinity

◮ The affine part of CF (F) are points [X,Y, 1], i.e. points on
Cf (F) with

f(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6.

◮ The projective part of CF (F) are points [X,Y, 0].

◮ Let [X,Y, 0] ∈ P2(F). Plugged into C, one obtains X3 = 0
and Y 6= 0, i.e. a triple zero and we define

O = [0, Y, 0] = [0, 1, 0] ∈ CF (F).

◮ Therfore, O = [0, 1, 0] is the only non-affine point on an
elliptic curve.

February 10, 2011 217 / 257

The point at infinity cntd.

◮ O is for all polynomials F a regular point of the curve CF (F)
with

δF

δZ
(0, 1, 0) = 1,

i.e. testing for singularity can be done in the affine world.

◮ When considering elliptic curves O is called the point at
infinity and O is a rational point.

◮ O is also:
◮ the projective intersection of vertical lines,
◮ a point of inflection of CF (F).

February 10, 2011 218 / 257

Weierstraßreduction

Observation:

◮ There are different elliptic curves which have the same rational
points.

Task: Find the following elements:

◮ A transformation that projects the rational points of two
elliptic curves bijectively on each other.

◮ An elliptic curve of simple form, i.e. with few terms, onto
which the rational points of all/many curves can be projected.

February 10, 2011 219 / 257

Weierstraßnormal form

Result: Weierstraßnormal form

◮ Curves in the original and in the Weierstraß normal form have
different shapes.

◮ Examining rational points on elliptic (in general on cubic)
curves can be reduced to Weierstraß normal form.

We will now show:

◮ The Weierstraß normal form of an elliptic curve depends on
the characteristic of the base field.

◮ The larger the characteristic of the base field the easier the
Weierstraß normal form.

February 10, 2011 220 / 257

Weierstraß reduction

Theorem 8.7 (Weierstraß reduction) Let CF (F) be an elliptic
curve over the field F with

F (X,Y,Z) = Y 2Z+a1XY Z+a3Y Z2−X3−a2X2Z−a4XZ2−a6Z3

i) Let char F = 2 and a1 6= 0. Then

a) The transformation Γ1 : P
2(F)→ P2(F) with

Γ1([X,Y, Z]) =

[

X

a21
− a3Z

a31
,
Y

a31
− (a21a4 + a23)Z

a61
, Z

]

is bijective.

February 10, 2011 221 / 257

Theorem Weierstraß reduction cntd.

b) Let

G1(X,Y,Z) = Y 2Z +XY Z −X3 − b2X
2Z − b6Z

3

with

b2 =
a3 + a1a2

a31
and

b6 =
a61a6 + a51a3a4 + a41a2a

2
3 + a41a

2
4 + a31a

3
3 + a43

a121
.

Then we have
Γ1(CF (F)) = CG1(F)

The Weierstraß normal form of an elliptic curve with new
coefficients over a field with characteristic 2 is

Y 2Z +XY Z = X3 + a2X
2Z + a6Z

3(homogeneous)

y2 + xy = x3 + a2x
2 + a6(affine)

i.e. a1 = 1 and a3, a4 = 0.

February 10, 2011 222 / 257

Theorem Weierstraß reduction cntd.

ii) Let char F 6= 2.Then
a) The transformation Γ2 : P

2(F)→ P2(F) with

Γ2([X,Y, Z]) =

[

X,Y +
a1x

2
+

a3Z

2
, Z

]

is bijective.
b) Let

G2(X,Y, Z) = Y 2Z −X3 − 1

4
c2XZ2 − 1

4
c6Z

3

with c2 = a21 + 4a2, c4 = 2a4 + a1a3 and c6 + a23 + 4a6. Then
we have

Γ2(CF (F)) = CG2
(F)

The Weierstraß normal form of an elliptic curve over a field with
characteristic not equal 2 is

Y 2Z = X3 + a2X
2Z + a4XZ2 + a6Z

3(homogeneous)

y2 = x3 + a2x
2 + a4x+ a6(affine)

i.e. a1, a3 = 0.

February 10, 2011 223 / 257

Theorem Weierstraß reduction cntd.

iii) Let char F 6= 2, 3.Then
a) The transformation Γ3 : P

2(F)→ P2(F) with

Γ3([X,Y, Z]) = [36X + 3c2Z, 216Y, Z]

is bijective.
b) Let

G3(X,Y, Z) = Y 2Z −X3 + 27d4XZ2 + 54d6Z
3

with d4 = c22 − 24c4, d6 = −c32 + 36c2c4 − 216c6. Then we have

Γ3(CG2
(F)) = CG3

(F)

The Weierstraß normal form of an elliptic curve over a field with
characteristic not equal 2 and 3 is

Y 2Z = X3 + a4XZ2 + a6Z
3(homogeneous)

y2 = x3 + a4x+ a6(affine)

i.e. a1, a2, a3 = 0.

February 10, 2011 224 / 257

Proof of Weierstraß normal form construction

The steps for the proof for (i),(ii) and (iii):

◮ Construction of a transformation Γ−1
i , an inverse to Γi, e.g.

Γ−1
2 ([X,Y,Z]) =

[

X,Y − a1X

2
− a3Z

2
, Z

]

◮ Moving to Gi by substituting the variables in F (respectively
G2) according to Γ−1

i , e.g.: Evaluate

F (X,Y − 1

2
a1X −

1

2
a3Z,Z)

with the goal G2(X,Y,Z).

◮ Proof of non-singularity of CGi
(F) by computing partial

derivatives, e.g. by using the chain rule.

δG2

δX
(X,Y Z) =

δF

δX
(Γ−1

2 (X,Y,Z)) − a1
2

δF

δY
((X,Y,Z))

February 10, 2011 225 / 257

Discriminant and j-Invariant

Definition 8.8 Let CF (F) with

F (X,Y,Z) = Y 2Z+a1XY Z+a3Y Z2−X3−a2X2Z−a4XZ2−a6Z3

and

b2 = a21 + 4a2

b4 = 2a4 + a1a3

b6 + a23 + 4a6

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24

February 10, 2011 226 / 257

Discriminant and j-Invariant cntd.

i) The discriminant of the elliptic curve CF (F) is

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6.

ii) The j-Invariant of CF (F) is

j =
(b22 − 24b4)

3

∆

◮ The j-Invariant determines the isomorphism class of an elliptic
curve over the algebraic closure.

◮ The discriminant gives information about the singularity of an
elliptic curve.

February 10, 2011 227 / 257

Singularity

Theorem 8.9 CF (F) is singular if and only if, ∆ = 0.
Proof: Exercise.

February 10, 2011 228 / 257

8.3 The group law

February 10, 2011 229 / 257

Operation on points of an elliptic curve

We can define an operation on the set of points of an elliptic curve
which leads to an abelian group.
Ways to introduce the operation:

◮ Using algebra only: not very descriptive,

◮ traditional geometry (affine): motivation incomplete,

◮ projective geometry: combines clear description with analytics.

February 10, 2011 230 / 257

8.3.1 Projective lines

February 10, 2011 231 / 257

Projective lines

◮ A projective line L(a, b, c) is a projective curve CF (F) with

F (X,Y,Z) = aX + bY + cZ and (a, b, c) 6= (0, 0, 0).

◮ The affine reduction of L(a, b, c), l(a, b, c) is CF (F) with

f(x, y) = ax+ by + c.

◮ If (a, b) 6= (0, 0), then l(a, b, c) is a line in the affine plane.

◮ Otherwise, L(a, b, c) has no affine part and l(a, b, c) is empty.

February 10, 2011 232 / 257

Properties of projective lines

◮ A projective line is non-singular if there is no point in which all
partial derivatives vanish simultaneously.

◮ Given two projective points, there is exactly one projective line
that runs through both of them.

◮ Let P1 = [x1, y1, z1] and P2 = [x2, y2, z2], P1 6= P2.
◮ Plugging these points into a projective line results in two

linearly independent equations

ax1 + by1 + cz1 = 0

ax2 + by2 + cz2 = 0

which have a linear solution space.

February 10, 2011 233 / 257

Intersection of projective lines

◮ Two projective lines intersect always in one point:

i) The lines have an affine intersection point.
ii) The lines do not have an affine intersection, i.e. are parallel in

the affine space:
◮ Consider two parallel affine lines

f1(x, y) = y − ax

f2(x, y) = y − ax− c

and their projctive description:

F1(X,Y, Z) = Y − aX

F2(X,Y, Z) = Y − aX − cZ

◮ F1 and F2 intersect in P = [1, a, 0], i.e. at infinity in the
affine space.

February 10, 2011 234 / 257

8.3.2 Points of intersection of projective
lines and curves

February 10, 2011 235 / 257

Tangent in a point

Definition 8.10 Let P = [a, b, c] ∈ CF (F) be a non-singular point
on the projective curve CF (F), i.e. not all partial derivatives vanish
in P . The tangent in P on CF (F) is the line

L

(

δF

δX
(a, b, c),

δF

δY
(a, b, c),

δF

δZ
(a, b, c)

)

February 10, 2011 236 / 257

Multiple zeros

Definition 8.11 Let
P1, P2 ∈ L(a, b, c), P1 = [x1, y1, z1], P2 = [x2, y2, z2]. The
multiplicity of the intersection of L(a, b, c) and CF (F) in P1,
denoted as

m(P,L(a, b, c), CF (F))

is the multiplicity of a zero in t = 0 of the polynomial

g(t) = F (x1 + tx2, y1 + tY2, z1 + z2)

February 10, 2011 237 / 257

Multiple zeros cntd.

◮ If P1 is not on CF (F), then g(0) 6= 0, i.e. g(t) has no zero at
0.

◮ In case L(a, b, c) is the tangent in P on CF (F), then

m(P,L(a, b, c), CF (F)) ≥ 2

◮ g(0) = 0
◮ The order of the zero is the smalles exponent of t in g(t).
◮ If all derivatives up the the kth derivative are 0, then the order

is k.
◮ Continue with the chain rule.

February 10, 2011 238 / 257

Intersection of a line with an elliptic curve

Theorem 8.12 A projcetive line L(a, b, c) and an elliptic curve
E(F) do not intersect, intersect once, or intersect three times, i.e.

∑

P∈P2(F)

m(P,L(a, b, c), E(F)) = 0 or 1 or 3

Proof idea: case distinction for a and b.

February 10, 2011 239 / 257

Intersection of a line with an elliptic curve

Corollary 8.13 The line, that runs through two points on an
elliptic curve, also intersects this curve in a third point.
Corollary 8.14 The tangent in a point on an elliptic curve, also
intersects this curve in another point.

February 10, 2011 240 / 257

8.3.3 The group operation

February 10, 2011 241 / 257

Intersection points

◮ Let E(F) = C(F) with:

F (X,Y,Z) = Y 2Z+a1XY Z+a3Y Z2−X3−a2X2Z−a4XZ2−a6Z3

Definition 8.15 Let P,Q ∈ E(F)

i) If P 6= Q then let
◮ L1 be the line through P and Q,
◮ R the third intersection point of L1 with E(F), i.e.

E(F) ∩ L1 = {P,Q,R}.
ii) If P = Q then let

◮ L1 be the tangent in P ,
◮ R is the intersection point of L1 with E(F), i.e.

E(F) ∩ L1 = {P,R}.

February 10, 2011 242 / 257

Intersection with O

Consider O:

i) If R 6= O then let
◮ L2 be the line through R and O,
◮ S the third intersection point of L2 with E(F), i.e.

E(F) ∩ L2 = {R,O, S}.
ii) If R = O then let

◮ L2 be the tangent in O,
◮ S the intersection point of L2 with E(F), i.e.

E(F) ∩ L2 = {O, S}.

February 10, 2011 243 / 257

The operation

Using this we define

S = P +Q, if P 6= Q

S = P + P = 2P, if P = Q

Theorem 8.16 According to Definition 8.15 (E(F),+) is an
abelian group. The neutral element is O.

February 10, 2011 244 / 257

8.3.4 Addition formula

February 10, 2011 245 / 257

Addition with non-affine points

◮ The only non-affine point is O.

◮ One can easily check

O + P = P

O +O = O

and with P = −Q it holds P +Q = O.

February 10, 2011 246 / 257

Limiting addition to the affine part

With the above observation we can now limit the addtion to the
affine part, i.e. to E(F) = Cf (F) with

f(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6

Find explicit coordinates of

◮ P +Q with P 6= Q and P 6= −Q: addition formula,

◮ P + P = 2P : point doubling,

for elliptic curves over

◮ arbitrary fields,

◮ fields F with charF 6= 2, 3.

February 10, 2011 247 / 257

Addition formula for affine points in arbitrary fields

Theorem 8.17

i) Let P = (x, y) ∈ E(F). Then

−P = (x,−y − a1x− a3)

ii) Let P1, P2 ∈ E(F), P1 = (x1, y1) and P2 = (x2, y2), s.t.
P1 6= P2 and P1 6= −P2. Then

P3 = (x3, y3) = P1 + P2

with

x3 = λ2 + a1λ− a2 − x1 − x2

y3 = −(λ− a1)x3 − ν − a3

and

λ =
y2 − y1
x2 − x1

ν =
y1x2 − y2x1
x2 − x1

February 10, 2011 248 / 257

Addition in arbitrary fields contd.

iii) Let P = (x, y) ∈ E(F). Then

2P = (x′, y′)

with

x′ = λ2 + a1λ− a2 − 2x

y′ = −(λ− a1)x
′ − ν − a3

and

λ =
3x2 − 2a2x+ a4 − a1y

2y + a1x+ a3

ν =
−x3 + a4x+ 2a6 − a3y

2y + a1x+ a3

February 10, 2011 249 / 257

Addition formula for affine points in fields with char 6= 2, 3

Theorem 8.18 Let E(F) = Cf (F) with

f(x, y) = y2 − x3 − ax− b

i) Let P = (x, y) ∈ E(F). Then

−P = (x,−y)

February 10, 2011 250 / 257

Addition in fields with char 6= 2, 3 contd.

ii) Let P1, P2 ∈ E(F), P1 = (x1, y1) and P2 = (x2, y2), s.t.
P1 6= P2 and P1 6= −P2. Then

P3 = (x3, y3) = P1 + P2

with

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1

and

λ =
y2 − y1
x2 − x1

February 10, 2011 251 / 257

Addition in fields with char 6= 2, 3 contd.

iii) Let P = (x, y) ∈ E(F). Then

2P = (x′, y′)

with

x′ = λ2 − 2x

y′ = λ(x− x′)− y

and

λ =
3x2 + a

2y

February 10, 2011 252 / 257

Example 1

Let y2 = x3 + 17, P1 = (−1, 4) and P2 = 2, 5.

◮ Line through P1 and P2:

y =
1

3
x+

13

3

This results in:

x3 = −
8

9
and y3 =

109

27

Hence,

P1 + P − 2 =

(

−8

9
,−109

27

)

◮ Tangent on P1:

λ =
f ′(−1)

8
=

3

8
Therefore,

2P1 =

(

137

64
,−2651

512

)

February 10, 2011 253 / 257

Example 2

Let y2 = x3 + x+ 1 ∈ F5. One obtains by testing all possibilities

E(F5) = {O, (0,±1), (2,±1), (3,±1), (4,±2)}.

Hence, E(F5) is an abelian group of order 9.

◮ Must be cyclic or the direct product of two groups of order 3.

◮ Decision is made via the group table.

◮ Let P = (0, 1), then

2P = (4, 2), 3P = (2, 1), 4P = (3,−1) etc.

therfore E(F5) is cyclic of order 9.

◮ The points (2,±1) have order 3, all others, except for O have
order 9.

February 10, 2011 254 / 257

8.3.5 Further research on elliptic curves

February 10, 2011 255 / 257

Further topics with elliptic curves

◮ Avoiding bad curves.

◮ Determining good curves.

◮ Efficient implementation.

◮ Embedding into cryptographic protocols.

February 10, 2011 256 / 257

Uses of elliptic curves

◮ Factoring.

◮ Prime number proofs.

◮ Keep your eyes open in all areas of mathematics:
◮ A natural number n is congruent, if it is the area of a right

triangle with rational sides, i.e. there are rational numbers a, b,
and c, s.t.

n =
1

2
ab and a2 + b2 = c2

◮ Fermat: 1,2 and 3 are not congruent.
◮ Fibonacci: 5 and 6 are congruent.
◮ Euler: 7 is congruent.
◮ General result: Tunnell (1983) with elliptic curves.

◮ Fermats Last Theorem: Proven by Wiles(1995) using elliptic
curves.

◮ Further methodes.

◮ Hyperelliptic curves.

February 10, 2011 257 / 257

	Basics of computer security
	Preliminary considerations
	Systematic approach

	Cryptographic systems
	Introduction
	Encryption schemes
	symmetric encryption
	Asymmetric encryption

	Random numbers
	Introduction
	Attempts to define randomness
	Constructions of PRNGs
	Statistical Tests

	4 Finding primes and primality testing
	The basic algorithm
	Probabilistic algorithm
	Carmichael numbers and further results
	Finding prime numbers

	One-way functions and Hash-functions
	Cryptographic Hash-functions
	One-way functions for asymmetric crypto systems

	RSA
	Theoretical foundations
	Construction of the RSA one-way function
	Generating RSA keys
	Confidentiality with RSA
	Computing the secret key and factoring the modulus are equally hard
	Attacks on RSA

	Foundations of asymmetric crypto systems based on groups
	Cryptosystems based on the discrete log problem
	Groups for asymmetric crypto systems
	Comparison of key lengths

	Elliptic curves in finite fields
	Projective geometry
	Elliptic curves
	The group law

