Advanced Cryptography: Algorithmic Cryptanalysis Daniel Loebenberger, Konstantin Ziegler

0. Repetition sheet

Exercise 0.1 (High powers). Compute $3^{98765432101}$ in \mathbb{Z}_{101} .

Exercise 0.2 (Touching \mathbb{F}_4). Consider polynomials of degree less than 2 over the field \mathbb{F}_2 . Define addition and multiplication of them modulo the polynomial $X^2 + X + 1$.

- (i) Write down the complete list of elements.
- (ii) Write down the addition table.
- (iii) Write down the multiplication table.

We can now consider polynomials over \mathbb{F}_4 : $T^2 + T + 1$ is such a polynomial. Factor it (over \mathbb{F}_4).

Exercise 0.3 (Computing in \mathbb{F}_{256}). Let *M* be your student id. Let

 $a = M \mod 256, b = (M \operatorname{div} 256) \mod 256, and c = (a + b) \mod 256$

Now interpret a, b and c as elementes of \mathbb{F}_{256} . Compute in \mathbb{F}_{256}

- (i) a + b (Attention! Usually the result will not be c!),
- (ii) $a \cdot b$, and
- (iii) 1/a (or 1/b in case a = 0).

Note: If $x = x_1 \cdot 256 + x_0$ with $0 \le x_0 < 256$, then $x \operatorname{div} 256 = x_1$ and $x \operatorname{rem} 256 = x_0$.

Exercise 0.4 (Computing inverses). If possible compute the inverse

- (i) ... of 89 in the ring \mathbb{Z}_{101} ,
- (ii) ... of 42 in the ring \mathbb{Z}_{1001} ,

Give a proof if no inverse exists.