
Co
se

C

b-it

C
om

pu
te

r

S
e

C
u
ri

ty

Advanced Cryptography: Algorithmic Cryptanalysis
DANIEL LOEBENBERGER, KONSTANTIN ZIEGLER

1. Exercise sheet
Hand in solutions until Saturday, 16 April 2011, 23:59h,

your code (exercises 1.5) until Saturday, 23 April 2011, 23:59h.

Basic attacks.

Exercise 1.1 (Attack models). (7 points)

In the lecture we saw that there are several different attack models. Each at-
tack model consists of an attack goal (key recovery, message recovery or dis-
tinguishing) together with the resources of the adversary (public information
only, ciphertext only, known plaintext, chosen plaintext or chosen ciphertext).

(i) Specify the strongest attack model, i.e. figure out which type of adver- 2
sary is the least powerful one.

(ii) Specify the weakest attack model, i.e. figure out which type of adversary 2
is the most powerful one.

(iii) Put all the attack models in relation to each other, i.e. draw a table with 3
the fifteen possible attack models and put an arrow between two of them
if an attack in one model implies an attack in the other model.

Exercise 1.2 (Brute force). (5 points)

To get a better understanding of the amount of work you need to do when 5
employing brute-force cryptanalysis, estimate for which key-sizes you can ex-
haustively test all keys within a year using your own computer, all computers
of a university with, say, 10000 computers, or all computers in the world (there
are roughly 2 billion computers out there). You can assume that testing a single
key requires exactly one CPU cycle and that each computer runs with 1GHz
on average.

Saturation attacks on AES.

Exercise 1.3 (A property of the exclusive or). (3 points)

Consider the set B = {0, 1}k of all k-bit binary strings. Prove that for k > 1 we 3
have ⊕

b∈B

b = 0.



Co
se

C

b-it

C
om

pu
te

r

S
e

C
u
ri

ty

2 Daniel Loebenberger, Konstantin Ziegler

Exercise 1.4 (MixColumns on lambda-sets). (5 points)

Let Λ be a lambda-set with exactly one active byte per column. Show that5
element-wise application of MixColumns on Λ yields a lambda-set with all
bytes active.

Exercise 1.5 (The saturation attack on four round AES running).
(20+15 points)

Goal of this exercise is to have a full-scale implementation of the saturation at-
tack on four round AES. You can use any programming language of you choice
(please refrain from using esoteric language like Whitespace or Brainfuck). We
recommend using the open source computer algebra system sage

http://www.sagemath.org/

Hand in your commented sources as well as a output trace of your program.
Note that if your code does not compile, we cannot grade it.

(i) You do not want to reinvent the wheel. So find a nice AES library, that4
gives the possibility to access the round functions of AES and thus allows
implementation of attacks on reduced round variants of AES. In sage
there is the package sage.crypto.mq that can be employed, using for
example the lines

from sage.crypto import mq

myaes = mq.SR(4, 4, 4, 8, star=True,
allow_zero_inversions=True,
aes_mode=True)

(ii) Randomly select a plaintext and a key. In sage you can use the com-1
mand

plain = myaes.random_state_array()
key = myaes.random_state_array()

(iii) Implement now a routine reduced_round_AES that realized AES with3
num_rounds rounds on the plaintext plainwith key key (note that the
last round differs from the inner rounds.

(iv) Realize the generation of lambda-sets with exactly one active byte. Each2
such set consists of 256 AES states, where one byte ranges over all possi-
ble elements of F256, and the other bytes are fixed .



Co
se

C

b-it

C
om

pu
te

r

S
e

C
u
ri

ty

Advanced Cryptography: Algorithmic Cryptanalysis 3

(v) Create a function guess_key that

(a) Creates two lambda-sets Λ1 and Λ2.1

(b) Applies four-round AES on each element of Λ1 and Λ2, respectively, 1
giving two sets D1 and D2.

(c) Guess all round-key bytes kij for 0 ≤ i, j < 4 individually by using 5
the relations

c[ℓ]ij = SBox−1(D[ℓ]i,j−i + ki,j−i)

and ∑

ℓ

c[ℓ]ij = 0

holding for all ℓ. Return FAIL if more than one guess fulfills the
relations. Note that in sage, there is no predefined function for
SBox−1, you will have to create it manually by a function like

def inv_sbox(myaes):
res = {}
for e in myaes.base_ring():
res[myaes.sub_byte(e)] = e

return res

(vi) Describe how you can reconstruct the key knowing the fourth round key 3
in AES.

(vii) Implement this step. (This requires, at least in sage, somewhat reinven- +5
tion of the wheel, since there are no decryption libraries in the crypto
package.)

(viii) Perform statistics on the failure rate of your routine guess_key: Deter- +10
mine how often your algorithm returns FAIL with just one lambda-set.
Do the same with two lambda sets. Did it happen that the algorithm
returned a key that was not the correct one?


