Advanced Cryptography: Algorithmic Cryptanalysis
 Daniel Loebenberger, Konstantin Ziegler

2. Exercise sheet

Hand in solutions until Saturday, 30 April 2011, 23:59h.

Exercise 2.1 (Using an SPN for decryption).

Let y be the encryption of a message x with key K by an SPN with S-box π_{S} and bit-permutation π_{P}. In other words,

$$
y=\operatorname{SPN}\left(x, \pi_{S}, \pi_{P},\left(K^{1}, \ldots, K^{N+1}\right)\right),
$$

where (K^{1}, \ldots, K^{N+1}) is the key schedule. Find an S-box π_{S}^{*}, a bit-permutation π_{P}^{*} and a key schedule $\left(L^{1}, \ldots, L^{N+1}\right)$, such that

$$
x=\operatorname{SPN}\left(y, \pi_{S}^{*}, \pi_{P}^{*},\left(L^{N+1}, \ldots, L^{1}\right)\right) .
$$

Exercise 2.2.

Suppose that the S-box of the example in the lecture is replaced by the S-box 7 defined by the following substitution:

z	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
$\pi_{S}(z)$	E	2	1	3	D	9	0	6	F	4	5	A	8	C	7	B

(i) Compute the table of values N_{D} for this S-box.
(ii) Find a differential trail using four active S-boxes, namely $S_{1}^{1}, S_{4}^{1}, S_{4}^{2}$, and S_{4}^{3}, that has propagation ratio $27 / 2048$.
(iii) How many encrypted messages will you have to request for a differential attack with this trail in order to achieve similar confidence as with the differential trail described in the lecture?

Exercise 2.3.

Suppose that X_{1}, X_{2}, and X_{3} are independent discrete random variables defined on the set $\{0,1\}$. Let ϵ_{1} denote the bias of X_{i}, for $i=1,2,3$. Under which conditions on ϵ_{i} are $X_{1} \oplus X_{2}$ and $X_{2} \oplus X_{3}$ independent? (Recall, that in the lecture, we saw that this is in general not the case.)

Exercise 2.4.

Daniel shows you his self-made random-number-generator which produces 16-bit numbers. But the distribution is not uniform! Daniel's favorite number is chosen with probability $27 / 1024$ - and you know that probability, but not the value of the number.
(i) How many calls to the random-number-generator do you expect to make, such that the favorite number occurs at least 9 times?
(ii) Assume that the probability distribution of the non-favorite numbers is uniform. What is the probability that any other number occurs at least 5 times, given the numbers of calls you derived in (i)?

