Advanced Cryptography: Algorithmic Cryptanalysis
 Daniel Loebenberger, Konstantin Ziegler

4. Exercise sheet
 Hand in solutions until Saturday, 07 May 2011, 23:59h.

Exercise 4.1 (Primitivity).

In the lecture we have seen that the period of the output sequence of an LFSR over \mathbb{F}_{q} with minimal polynomial g is maximal if and only if the polynomial g is primitive. One can show the following

Theorem. An irreducible polynomial g of degree k over \mathbb{F}_{q} is primitive if the smallest exponent n for which g divides $x^{n}-1$ is $n=q^{k}-1$.

Specify an algorithmic method using the above fact that decides efficiently whether a given polynomial is primitive over \mathbb{F}_{q} given the prime factorization of $q^{k}-1$. Note: $x^{e}-1$ divides $x^{n}-1$ if and only if e divides n.

Exercise 4.2 (Linear recurring sequences).
(10 points)
Consider the following two linear recurrent sequences over \mathbb{F}_{2} defined for integers $n \geq 0$ by

$$
s_{n+15}=s_{n+14}+s_{n}
$$

and

$$
t_{n+17}=t_{n+14}+t_{n+2}+t_{n+1}+t_{n} .
$$

(i) Draw the two corresponding linear feedback shift registers (LFSRs) that implement the sequences $\left(s_{n}\right)_{n \geq 0}$ and $\left(t_{n}\right)_{n \geq 0}$.
(ii) Now initialize the LFSR corresponding to $\left(s_{n}\right)_{n \geq 0}$ with $(0, \ldots, 0,1)$ and the other one with $(0, \ldots, 0,1,1,1)$. Compute the next 15 sequence elements. What do you observe?
(iii) Compute for both registers the characteristic polynomials $g_{s}(x)$ and $g_{t}(x)$.
(iv) Show that g_{s} divides g_{t}.
(v) Show that g_{s} is primitive over \mathbb{F}_{2}.

Exercise 4.3 (The correlation attack running).
(14+5 points)
We are going to see the correlation attack running on the following generator: It consists of three LFSRs of size 15 bits, 16 bits and 19 bits (respectively) over \mathbb{F}_{2} with minimal polynomials

$$
\begin{aligned}
& g_{1}(x)=x^{15}+x^{14}+1 \\
& g_{2}(x)=x^{16}+x^{15}+x^{4}+x^{2}+1 \\
& g_{3}(x)=x^{19}+x^{18}+x^{5}+x+1
\end{aligned}
$$

and nonlinear combiner

$$
g\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} \oplus x_{1} x_{3} \oplus x_{2} x_{3}
$$

(i) Determine the period of the sequence generated by the key-stream generator. Give a proper argument to justify your claim.
(ii) Compute the correlation probabilities for all three LFSRs and the output key-stream.
(iii) Write a routine that implements the three LFSRs. To check the correctness of your implementation compare the first 100 output bits of the LFSRs for the seeds $[0, \ldots, 0,1]$ with the correct sequences given below:

Output LFSR 1:

$$
\begin{aligned}
& 0000000000000011111111111111101010101010101 \\
& 0011001100110011101110111011101001011010010 \\
& 11000110110001
\end{aligned}
$$

Output LFSR 2:

```
0000000000000001111111111111110111010101011001
0101100100110001001101001011101100110110101
11000111110101
```


Output LFSR 3:

0000000000000000001111111111111101011010101 0100110011010011011100010100001001011010010 11110110110001
(iv) Implement the full generator, i.e. connect the outputs of the LFSRs using the nonlinear combiner g. To check your implementation, here are the first 100 bits of the output of the key stream generator (3 LFSRs with nonlinear combiner g, each of them with seed $[0, \ldots, 0,1]$):

Output LFSRs with nonlinear combiner f :

0000000000000001111111111111111010101010101 0101100100110011001100011011101001011010010 11000110110001
(v) On the webpage you will find the first 1000 bits of the output of the LFSRs with nonlinear combiner where the seeds are unknown. Perform the correlation attack to find the seeds. Note that the program will run several minutes to perform the attack. In order to filter the seed candidates use the threshold $\theta=\theta_{1}=\theta_{2}=\theta_{3}=0.57$, i.e. add a seed candidate to a list of correct candidates if the guessed keystream agrees in a fraction of at least θ bits.
(vi) What happens if you decrease/increase θ ?

Hand in your written solutions, the commented source code and the correct seeds.

