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Advanced Cryptography: Algorithmic Cryptanalysis
DANIEL LOEBENBERGER, KONSTANTIN ZIEGLER

5. Exercise sheet
Hand in solutions until Saturday, 14 May 2011, 23:59h.

To estimate the average effort you put into solving the following exercises,
please add to your solutions the amount of time you spent on the respective
questions.

Exercise 5.1 (Fast Walsh transform). (11+8 points)

In the lecture we discussed the Walsh transform of a boolean function f : Fn
2 →

F2 defined for M ∈ F
n
2 as

(Wf)(M) =
∑

x∈Fn
2

(−1)〈M |x〉(−1)f(x),

with the scalar product 〈M | x〉 =
∑n−1

i=0 Mixi. Your task is now to develop a
fast algorithm for computing the Walsh transform Wf of f .

(i) Specify a trivial algorithm that runs in O(22n) evaluations of f to com- 2
pute the Walsh transform.

(ii) Give a simple formula that gives for n = 1 the Walsh transform of f . 2

(iii) Interpret now the vectors x and M as the binary representation of an 2
integer. Prove that for x < 2n−1 and M < 2n−1 we have

(Wf)(M) = (Wf0)(M) + (Wf1)(M)

where f0(x) = f(x) and f1(x) = f(2n−1 + x).

(iv) Prove that for x < 2n−1 and M < 2n−1 we have 2

(Wf)(2n−1 +M) = (Wf0)(M)− (Wf1)(M)

(v) Plug everything together to give a faster algorithm that runs in O(n2n) 3
evaluations of f to compute the Walsh transform Wf of f .

(vi) Give an algorithm that realizes the inverse Walsh-transform and prove +8
that it indeed is the inverse of the Walsh-transform algorithm of exercise
5.1 (i).
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2 Daniel Loebenberger, Konstantin Ziegler

Exercise 5.2 (A particular nonlinear function). (4+4 points)

To totally prevent correlation attacks on the filtered generator, a non-linear
function f : F

n
2 → F2 would be needed whose Walsh-transform equals the

zero function.

(i) For n = 1, 2, 3 either give such a function or show that it does not exist.4

(ii) What do you conjecture in general?+4

Exercise 5.3 (More on LFSRs). (6 points)

Consider a linear function Lf : Fℓ
2 → F2 and an LFSR on k ≥ ℓ bits, where Lf

takes for each fixed t some bits

(xt+δ0 , xt+δ1 , xt+δ2 , . . . , xt+δℓ−1
)

for fixed constants δ0 < δ1 < · · · < δℓ−1 < k and returns

yt = Lf (xt+δ0 , xt+δ1 , xt+δ2 , . . . , xt+δℓ−1
).

(i) Show that there is for each 0 ≤ i < ℓ a state ~x
(i)
t such that the LFSR in1

state ~x
(i)
t produces as a next bit the bit xt+δi .

(ii) Show that the output of the LFSR in state ~x
(0)
t ⊕ · · · ⊕ ~x

(ℓ−1)
t is yt.3

(iii) Give an argument that in general the sequence (yt)t≥0 is the output se-2

quence of the LFSR with initial state ~x
(0)
t ⊕ · · · ⊕ ~x

(ℓ−1)
t

Exercise 5.4 (Parity checks). (8 points)

Consider the LFSR of F2 given by the primitive minimal polynomial x3+x2+1.
It defines a linearly recurrent sequence (sn)n≥0 with period 23 − 1 = 7.

(i) Write down the linear relation defining the output sequence.1

(ii) Assume your register is in state (s0, s1, s2). For i = 3, . . . , 9, give the3
linear relations defining si in terms of s0, s1 and s2.

(iii) Write down the matrix of coefficients of the relations.1

(iv) Give all systematic equations involving bit s4 having d = 3 terms.3


