
Co
se

C

b-it

C
om

pu
te

r

S
e

C
u
ri

ty

Advanced Cryptography: Algorithmic Cryptanalysis
DANIEL LOEBENBERGER, KONSTANTIN ZIEGLER

8. Exercise sheet
Hand in solutions until Saturday, 04 June 2011, 23:59h.

To estimate the average effort you put into solving the following exercises,
please add after each exercise the amount of time you spent for it.

Exercise 8.1 (Gram-Schmidt orthogonalization). (8 points)

Consider the Gram-Schmidt orthogonalization from the lecture. There we con-
structed, given a basis B ∈ R

n×m of the vector space V := span(B), an orthog-

onal basis B∗ by defining b∗1 := b1, b∗i := bi −
∑

j<i µi,jb
∗
j with µi,j :=

〈bi,b∗j 〉

〈b∗
j
,b∗

j
〉 .

(i) Show that for i1 6= i2 the vectors b∗i1 and b∗i2 are orthogonal. 3

(ii) Show that for i < j the vectors bi and b∗j are orthogonal. 3

(iii) Consider the vector space V = span(B), spanned by the basis 2

B :=





2 1 2
0 2 1
0 0 2



 .

Compute an orthogonal basis of V .

Exercise 8.2 (A note on the volume). (5 points)

Let B ∈ R
n×m a basis of the lattice L = B and let B∗ be the Gram-Schmidt 5

matrix of B. We have defined the determinant of the lattice as det(L) =
vol(P (B)) =

√

det(BTB). Prove that det(L) =
∏

i ‖b
∗
i ‖. Hint: Use the fact that

B∗ = TB for some lower triangular matrix T with Ti,i = 1 for all i = 1 . . . m.

Exercise 8.3 (Breaking the knapsack cryptosystem). (26+10 points)

(i) NTL is a high-performance, portable C++ library providing data struc- +5
tures and algorithms for manipulating signed, arbitrary length integers,
and for vectors, matrices, and polynomials over the integers and over
finite fields. It has a highly optimized built in basis reduction algorithm
that is suitable for the following tasks we have in mind. To start, install
NTL on your computer and get familiar with the NTL-API. Hints how



Co
se

C

b-it

C
om

pu
te

r

S
e

C
u
ri

ty

2 Daniel Loebenberger, Konstantin Ziegler

to install NTL and details on the API can be found on http://www.
shoup.net/ntl/doc/tour.html. Now run the code lll.cpp from
the course page. To compile it, call for example under UNIX (or Mac OS
X) the compiler in the following way: g++ -o lll lll.cpp -lntl
-lm. You might have to include the headers using the −I flag and the
library using the −L flag. Details on that can be found in the man page
of g++. Consider now the lattice spanned by the matrix (written in row
notation)





1 2 3
4 5 6
7 8 9



 .

Hand in the output of the supplied program.

Goal of the following tasks is to become acquainted with the knapsack cryp-
tosystem, implement and brake it. Let m = 437 and c = 204. Bob’s private key
is b = (2, 6, 10, 26, 68, 161).

(ii) Compute Bob’s public key a.2

Now Alice wants to send the string x = (0, 1, 0, 1, 1, 0).

(iii) Encrypt x with Bob’s public key obtaining y.1

(iv) Describe in detail how Bob will decrypt the encrypted message y and do3
the decryption.

Now realize the following three functions:

Algorithm. Generate Key Pair.

Input: A positive integer n.
Output: The private key (b,m, c) and the public key a. The private key consists

of a superincreasing sequence b = (b1, . . . , bn)with bi ∈
(

∑

j<i bj, 2
∑

j<i bj

)

,

a value m ∈
(

∑

j≤n bj , 2
∑

j≤n bj

)

and a value c ∈ N with gcd(c,m) =

1. The public key is a sequence a = (cb1 (mod m), . . . , cbn (mod m)).

Algorithm. Encrypt.

Input: A message x ∈ {0, 1}n. The public key a.
Output: The encrypted message y =

∑

i≤n xiai.

Algorithm. Decrypt.

Input: A message y ∈ N. The private key (b,m, c).
Output: The decrypted message x.

In the lecture we have seen the following algorithm that computes (sometimes)
a solution to the knapsack problem:



Co
se

C

b-it

C
om

pu
te

r

S
e

C
u
ri

ty

Advanced Cryptography: Algorithmic Cryptanalysis 3

Algorithm. Short vectors for subset sums.

Input: Positive integers a0, a1, . . . , an.
Output: (x1, . . . , xn) ∈ Z

n or “failure”.

1. Let M = ⌈2(n−1)/2n1/2⌉.
2. If a0 <

∑

1≤i≤n ai/2 then a0 ←− ã0 =
∑

1≤i≤n ai − a0 else ã0 = 0.

3. For 0 ≤ i ≤ n, let bi ∈ Z
n+1 be as follows:

b0 = (a0M, 0, . . . , 0),

bi = (−aiM, 0, . . . , 0, 1, 0, . . . , 0) with 1 in position i, for 1 ≤ i ≤ n.

4. Let L ⊆ Z
n+1 be the lattice generated by b0, . . . , bn. Run the basis reduc-

tion on this basis and return a short nonzero vector v = (v0, . . . , vn) ∈
L.

5. If ã0 = a0 then For 0 ≤ i ≤ n, let vi ←− 1− vi
6. If v ∈ {0, 1}n+1 then return (v1, . . . , vn) else return “failure”.

Implement also this algorithm.

(v) Assume you have intercepted the message y = 1147. Bob’s public key is 20
now

a = (465, 441, 417, 241, 330, 251).

Use your implementation to compute the message x ∈ {0, 1}6 that Alice
sent to Bob using the above algorithm.

(vi) Take n = 6 and B = 36238786559. Run 100 examples with a1, . . . , a6 ←− +5
{1, . . . , B} and x←− {0, 1}6 \{(0, . . . , 0)}. How often did your algorithm
not succeed in finding x?


