Esecurity: secure internet & e-passports, summer 2011

MICHAEL NÜSKEN, RAOUL BLANKERTZ

3. Exercise sheet Hand in solutions until Monday, 25 April 2011, 23:59

Exerc	rise 3.1 (GnuPG). (6 points)		
(i)	Consider the model of trust in GnuPG. Describe how trust is transfered (ie. which keys are trusted?). Which parameters can be adjusted?	4	
(ii)	Which cryptographic algorithms are implemented in GnuPG?	2	
Exerc	rise 3.2 (X.509). (10 points)		
Read	RFC 5280 and answer the following questions:		
(i)	What classes of certificates are there?	2	
(ii)	What is the basic syntax of X.509 v3 certificates? Describe the Certificate Fields in detail. Which signature algorithms are supported?	2	
(iii)	What format has the Serial Number? What kind of knowledge do you [gain from the Serial Number?		
(iv)	What is a trust anchor? Can one use different trust anchors?		
(v)	What conditions are satisfied by a prospective certification path in the 2 path validation process?		

Exercise 3.3 (Security estimate).

(8 points)

RSA is a public-key encryption scheme that can also be used for generating signatures. It is necessary for its security that it is difficult to factor large numbers (which are a product of two primes). The best known factoring algorithms achieve the following (heuristic, expected) running times:

method		time for n -bit integers
trial division	$-\infty$	$\mathcal{O}^{\sim}(2^{n/2})$
Pollard's $p-1$ method	1974	$\mathcal{O}^{\sim}(2^{n/4})$
Pollard's ϱ method	1975	$\mathcal{O}^{\sim}(2^{n/4})$
Pollard's and Strassen's method	1976	$\mathcal{O}^{\sim}(2^{n/4})$
Morrison's and Brillhart's continued fractions	1975	$2^{\mathcal{O}(1)n^{1/2}\log_2^{1/2}n}$
Dixon's random squares	1981	$2^{(\sqrt{2}+o(1))n^{1/2}\log_2^{1/2}n}$
Lenstra's elliptic curves method		$2^{(1+o(1))n^{1/2}\log_2^{1/2}n}$
quadratic sieve		$2^{(1+o(1))n^{1/2}\log_2^{1/2}n}$
general number field sieve	1990	$2^{((64/9)^{1/3} + o(1))n^{1/3}\log_2^{2/3}n}$

It is not correct to think of o(1) as zero, but for the following rough estimates just do it, instead add a $\mathcal{O}(1)$ factor. Factoring the 768-bit integer RSA-768 needed about 1500 2.2 GHz CPU years (ie. 1500 years on a single 2.2 GHz AMD CPU) using the general number field sieve. Estimate the time that would be needed to factor an n-bit RSA number assuming the above estimates are accurate with o(1) = 0 (which is wrong in practice!)

- (i) for n = 1024 (standard RSA),
 - (ii) for n = 2048 (as required for Document Signer CA),
 - (iii) for n=3072 (as required for Country Signing CA).
 - (iv) Now assume that the attacker has 1000 times as many computers and 1000 times as much time as in the factoring record. Which n should I choose to be just safe from this attacker?

Repeat the estimate assuming that only Pollard's ϱ method is available

1 (v) for n = 1024,

1

1

2

- 1
- (vi) for n = 2048,
- (vii) for n = 3072.

Remark: The statistics for discrete logarithm algorithms are somewhat similar as long as we consider groups \mathbb{Z}_p^{\times} . For elliptic curves (usually) only generic algorithms are available with running time $2^{n/2}$.

Exercise 3.4 (Dixon's random squares).

(0+4 points)

(i) Let $N=q_1q_2\cdots q_r$ be odd with pairwise distinct prime divisors q_i and $r\geq 2$. Show: The equation $x^2-1=0$ has exactly 2^r solutions in \mathbb{Z}_N^{\times} .

Hint: Use the Chinese remainder theorem.

Note: The claim is also true, if the q_i are pairwise distinct prime powers. To see this you have to know that also for prime powers q the equation $x^2 - 1 = 0$ has exactly 2 solutions in \mathbb{Z}_q .

(ii) If s, t are random elements of \mathbb{Z}_N^{\times} satisfying $s^2 \equiv t^2 \mod N$, then the probability for $s \not\equiv \pm t \mod N$ is at least $1 - \frac{1}{2^{r-1}}$.