Linear Cryptanalysis of FEAL

Folker Hoffmann

Seminar: Block cipher cryptanalysis

May 2, 2011

Overview

- FEAL
- Encryption with FEAL
- Modification of FEAL
- Linear Cryptanalysis
- Idea
- Linear equations in FEAL
- Recovering the roundkeys
- Fast Data Encipherment Algorithm
- Proposed in 1987
- Goal: It should be suitable for implementation in software on smart cards
- Different versions:
- Number of rounds: 4, 8, N
- Block size: 64, 128
- FEAL-N, FEAL-NX
- Here: FEAL-4

FEAL: Encryption

- Feistel cipher

FEAL: Decryption

- Use the keys in reverse

The round function: f

The S-box

- Input: Two bytes X, Y + delta (0 or 1)
- Output: One byte

$$
\mathrm{S}(\mathrm{X}, \mathrm{Y}, \text { delta })=\mathrm{ROT} 2((\mathrm{X}+\mathrm{Y}+\text { delta }) \bmod 256)
$$

- Example: (delta = 1)

$$
\begin{array}{r}
\\
00010011 \\
+\quad 10110011 \\
+\quad 1 \\
= \\
\hline
\end{array}
$$

Key schedule

(Based on the image of the key schedule of FEAL-8 in: Shimizu \& Miyaguchi: Fast Data Encipherment Algorithm FEAL, 1988)

Rearrangement of FEAL

Linear Cryptanalysis of FEAL

Rearrangement of FEAL

- Key affects each byte

Rearrangement of FEAL

Rearrangement of FEAL

05/02/11

Linear Cryptanalysis of FEAL

Rearrangement of FEAL

Rearrangement of FEAL

Example: fM

Linear Cryptanalysis

- Known plaintext attack
- Basic idea: Find linear approximations of the cipher:
- $C\left[i_{1}\right] \oplus C\left[i_{2}\right] \oplus \ldots \oplus C\left[i_{n}\right] \oplus P\left[j_{1}\right] \oplus \ldots \oplus P\left[j_{m}\right]$

$$
\oplus \mathrm{K}\left[\mathrm{k}_{1}\right] \oplus \ldots \oplus \mathrm{K}\left[\mathrm{k}_{\mathrm{t}}\right] \oplus \mathrm{fM}\left(\mathrm{I}_{1}, \mathrm{k}_{1}\right)\left[\mathrm{f}_{1}\right]=1(\mathrm{or} 0)
$$

$$
=\mathrm{C}\left[\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{n}}\right] \oplus \mathrm{P}\left[\mathrm{j}_{1}, \ldots, \mathrm{j}_{\mathrm{m}}\right] \oplus \mathrm{K}\left[\mathrm{k}_{1}, \ldots, \mathrm{k}\right] \oplus
$$

$$
\mathrm{fM}\left(\mathrm{I}_{1}, \mathrm{k}_{1}\right)\left[\mathrm{f}_{1}\right]=1(\mathrm{Or}=0)
$$

Linear Cryptanalysis

- $C\left[i_{1}, i_{2}, \ldots, i_{n}\right] \oplus P\left[j_{1}, \ldots, j_{m}\right] \oplus K\left[k_{1}, \ldots, k_{l}\right] \oplus$
$\mathrm{fM}\left(\mathrm{I}_{1}, \mathrm{k}_{1}\right)\left[\mathrm{f}_{1}\right]=1(\mathrm{Or}=0)$
- For fixed k:
- $C\left[i_{1}, i_{2}, \ldots, i_{n}\right] \oplus P\left[j_{1}, \ldots, j_{m}\right] \oplus f M\left(I_{1}, k_{1}\right)\left[f_{1}\right]=$ const (0 or 1)

Linear approximation of fM

$\mathrm{O}[26]=\mathrm{I}[24] \oplus \mathrm{K}[24] \oplus \mathrm{O}[16]$
\Rightarrow
$\mathrm{O}[26,16]=\mathrm{I}[24] \oplus \mathrm{K}[24]$

$$
101
$$

Reminder: S0(X, Y) = ROT2 ($(X+Y) \bmod 256)$

Linear approximation of fM

- On a similar way:
- $\mathrm{O}[2,8]=\mathrm{I}[0] \oplus \mathrm{K}[0] \oplus 1$
- $\mathrm{O}[2,8,10,16]=\mathrm{I}[8] \oplus \mathrm{K}[0,8] \oplus 1$
- $\mathrm{O}[10,18,26]=\mathrm{I}[16] \oplus \mathrm{K}[16,24] \oplus 1$
- $\mathrm{O}[16,26]=\mathrm{I}[24] \oplus \mathrm{K}[24]$
- These equations are always true

Linear approximation of FEAL

- $\mathrm{O}[10,18,26]=\mathrm{I}[16] \oplus \mathrm{K}[16,24] \oplus 1$
- $\mathrm{I}_{2}[16]=\mathrm{fM}\left(\mathrm{PL} \oplus \mathrm{PR}, \mathrm{k}_{1}\right)[16] \oplus \mathrm{PL}[16]$
- $\mathrm{O}_{2}[10,18,26]=\mathrm{k}_{2}[16,24] \oplus 1$
$\oplus \mathrm{fM}\left(\mathrm{PL} \oplus P R, \mathrm{k}_{1}\right)[16] \oplus \mathrm{PL}[16]$
- $\mathrm{L}_{2}[10,18,26]=\operatorname{PR}[10,18,26] \oplus$ $\mathrm{PL}[10,18,26] \quad \oplus \mathrm{O}_{2}[10,18,26]$

Linear approximation of FEAL

- $\mathrm{O}[10,18,26]=\mathrm{I}[16] \oplus \mathrm{K}[16,24] \oplus 1$
- $\mathrm{L}_{2}[10,18,26]=\operatorname{PR}[10,18,26] \oplus$
$\mathrm{PL}[10,18,26] \quad \oplus \mathrm{k}_{2}[16,24] \oplus 1$
$\oplus \mathrm{fM}\left(\mathrm{PL} \oplus \mathrm{PR}, \mathrm{k}_{1}\right)[16] \oplus \mathrm{PL}[16]$
- $R_{3}[10,18,26]=L_{2}[10,18,26] \oplus$ $\mathrm{k}_{6}[10,18,26]$

Linear approximation of FEAL

- $\mathrm{O}[10,18,26]=\mathrm{I}[16] \oplus \mathrm{K}[16,24] \oplus 1$
- $\mathrm{I}_{4}[16]=\mathrm{CR}[16] \oplus \mathrm{CL}[16]$
- $\mathrm{O}_{4}[10,18,26]=\mathrm{CR}[16] \oplus \mathrm{CL}[16] \oplus$ $\mathrm{k}_{4}[16,24] \oplus 1$

Linear approximation of FEAL

- CL[10, 18, 26]

$$
=\mathrm{O}_{4}[10,18,26] \oplus \mathrm{R}_{3}[10,18,26]
$$

Linear approximation of FEAL

- $\mathrm{fM}\left(\mathrm{k}_{1}, \mathrm{PL} \oplus \mathrm{PR}\right)[16]$
$\oplus \mathrm{PL}[10,16,18,26] \oplus \mathrm{PR}[10,18,26]$
$\oplus \mathrm{CR}[16] \oplus \mathrm{CL}[10,16,18,26]$
$=\mathrm{k}_{2}[16,24] \oplus \mathrm{k}_{6}[10,18,26] \oplus \mathrm{k}_{4}[16,24]$
= const (either 1 or 0 for a particular key)

Recover k
 1

- $\mathrm{fM}\left(\mathrm{k}_{1}, \mathrm{PL} \oplus \mathrm{PR}\right)[16]$
- Determine k_{1}, such that the previous equation holds
- Max: $2^{\wedge} 16$ operations. That is in a possible range.

Recover k_{1}

- Use the other approximations to recover the rest of k_{1} :
- $\mathrm{O}[2,8]=\mathrm{I}[0] \oplus \mathrm{K}[0] \oplus 1$
- $\mathrm{O}[2,8,10,16]=\mathrm{I}[8] \oplus \mathrm{K}[0,8] \oplus 1$
- $\quad[\mathrm{O}[10,18,26]=\mathrm{I}[16] \oplus \mathrm{K}[16,24] \oplus 1]$
- $\mathrm{O}[16,26]=\mathrm{I}[24] \oplus \mathrm{K}[24]$

Recover the other subkeys

- $\mathrm{k}_{2}, \mathrm{k}_{3}, \mathrm{k}_{4}$ are recovered in an equal way
- k_{5}, k_{6} then follow directly

Runtime of this attack

- Implemented by Matsui \& Yamagishi
- with a 25 Mhz computer, 1992
- 2 seconds with 10 known plaintexts
- 350 seconds with 5 known plaintexts

Generalisation to more rounds

- FEAL-8 is breakable with this method
- Using 2^28 plaintexts
- Runtime: 2^50 subkeys are searched.
- Details: Matsui \& Yamagishi, 1992, A New Method for Known Plaintext Attack of FEAL cipher

Recapitulation

- FEAL-4
- Modification of FEAL-4
- Linear cryptanalysis
- Linear equations in f
- Linear equations in FEAL-4 depending on k_{1}
- Exhaustive key search
- Repeat this for $\mathrm{k}_{2}, \mathrm{k}_{3}, \ldots$

Sources

- Shimizu \& Miyaguchi: Fast Data Encipherment Algorithm FEAL, 1988
Advances in Cryptology, EUROCRYPT '87
- Matsui \& Yamagishi: A New Method for Known Plaintext Attack of FEAL Cipher, 1993
Advances in Cryptology - EUROCRYPT '92
- Stamp \& Low: Applied Cryptanalysis: Breaking Ciphers in the Real World, 2007

