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PRIME FLUX

M ICHAEL NÜSKEN

August 10, 2011

Abstract. This treatise summarizes various aspects related to prime
counting. This includes pointers to several variants of thePrime Num-
ber Theorem (Theorem 1.2). Some aspects of the intimately related Rie-
mannζ-function are sketched and ‘the’ exact formula is described.
Further, we sketch several algorithms for counting primes exactly.
As side tracks, we started investigating primes in arithmetic progres-
sions and other variations.
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2 Michael Nüsken

Part I

Global estimates
1. Counting primes

Consider the numberπ(x) of primes less or equal tox, or as we
prefer it:

π(x) =
∑P

p≤x

1.(1.1)

Here the sum runs over all primes(!)p less or equal thanx.
Whenever a sum runs over a parameterp orp′ orpi or q it shall be
self understood that it is a sum over primes only. Today, various
estimates for this count are available:

THEOREM 1.2 (Prime number theorem).We list a few variants:

(i) Chebyshev(1852), conjectured byLegendre(1798):

π(x) ≈ x

ln x
.

(ii) Hadamard(1896), de la Vallée Poussin(1896), Walfisz
(1963), conjectured byGauß(1849):

π(x) ∈ Li(x) +O
(

x exp

(

−A(ln x)3/5

(ln ln x)1/5

))

⊂ Li(x) +O
(

x

lnk x

)

for any k. The presently best known value forA is A =
0.2098 (Ford 2002a, p. 566).1

Here, the logarithmic integralLi is given byLi(x) :=
∫ x

2
dt
ln t .

Other authors useli(x) =
∫ x

0
dt
ln t , which differs fromLi(x) by

the additive constant
∫ 2

0
dt
ln t = 1.045 .2

(iii) Dusart(1998, Théorème 1.10, p. 36): Forx ≥ 355991 we
have
x

lnx
+

x

ln2 x
+1.8

x

ln3 x
< π(x) <

x

lnx
+

x

ln2 x
+2.51

x

ln3 x
.

This includes the classical estimateπ(x) < 2x
lnx .

(iv) Von Koch (1901), Schoenfeld(1976): If (and only if) the
Riemann hypothesis holds then forx ≥ 2657

|π(x)− li(x)| < 1

8π

√
x ln x.

If (and only if) the Riemann hypothesis holds then forx ≥
1451

|π(x)− Li(x)| < 1

8π

√
x ln x.

1The only estimate that we found with an explicitly given ‘constant’
has A = 1

57
and a = 11.88 ln3/5 x (well, that’s not constant,

but almost. . . ), Ford (2002b) attributes this to Y. Cheng,Explicit esti-
mates on prime numbers (pre-print). [Though there are several preprints
on arXiV (http://arxiv.org/abs/0810.2113v1, http://arxiv.
org/abs/0810.2102v3, http://arxiv.org/abs/0810.2103v5),
we couldn’t find that paper. . . ]

2Side remark: to indicate how a real number was rounded we append a special
symbol. Examples:π = 3.14 = 3.142 = 3.1416 = 3.14159 . The height
of the platform shows the size of the left-out part and the direction of the antenna
indicates whether actual value is larger or smaller than displayed. We write, say,
e = 2.72 = 2.71 as if the shorthand were exact.

(v) Cramér (1935, 1937): If primes were random with
prob(n prime) = 1

lnn then their counting functionΠ(x) ful-
fills

|Π(x) − Li(x)| <
√

2x ln lnx
lnx

asymptotically surely, and even more:

prob

(

limsup
x→∞

|Π(x)− Li(x)|√
2 ln ln x

√
x

ln x

= 1

)

= 1.

The prime counting functionπ gets three companions: the
Riemann prime counting functionπ∗ (also denotedΠ, π∗, J ,
or as by Riemannf ), the Chebyshev functionsϑ andϑ∗ (also
denotedψ).

π(x) =
∑

p≤x

1, π∗(x) =
∑

pk≤x

1

k
=
∑

n≤x

Λ(n)

lnn
,(1.3)

ϑ(x) =
∑

p≤x

ln p, ϑ∗(x) =
∑

pk≤x

ln p =
∑

n≤x

Λ(n).(1.4)

Here thevon MangoldtfunctionΛ is defined by

Λ(n) =

{

ln p if n = pk for somep ∈ P and somek ∈ N>0,

0 otherwise.

(1.5)

Note thatΛ(n)
lnn = 1

k for a prime powern = pk. To formulate
the simple relation between some of these we need the Möbius
function

µ(n) =







+1 if n is a product of aneven
number of distinct primes,

−1 if n is a product of anodd
number of distinct primes,

0 otherwise, that is, ifn is
squareful.

(1.6)

Forn > 1 we have
∑

d|n µ(d) = 0 whereas
∑

d|1 µ(d) = 1. If

nowg(n) =
∑

d|n f(d) thenf(n) =
∑

d|n µ(d)g(n/d).
i

The prime counting functions are related pairwise by the equa-
tions

π(x) =
∑

n≥1

µ(n)

n
π∗(x

1
n ), π∗(x) =

∑

n≥1

1

n
π(x

1
n ),(1.7)

ϑ(x) =
∑

n≥1

µ(n)ϑ∗(x
1
n ), ϑ∗(x) =

∑

n≥1

ϑ(x
1
n ).(1.8)

Furthermore, for each of these we add a variant with an mean
value at the jumps. For instance,π0(x) = lim

ε→0

π(x−ε)+π(x+ε)
2 .

Actually, this is related to rewriting expressions as Riemann-
Stieltjes integrals, which are then further transformed. For ex-
ample,

∑P

p≤x

f(p) =

∫ x

1

f(y) dπ(y)(1.9)

To give a further indication of their relation let me tell you
about the work ofRosser & Schoenfeld(1962, 1975) and
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Schoenfeld(1976). Actually, Theorem 1.2(iv) follows from
Schoenfeld’s following statement about the Chebyshev function
ϑ∗: for x ≥ 73.2

|ϑ∗(x)− x| < 1

8π

√
x ln2 x.

Following roughlySchoenfeld(1976) we derive Theorem 1.2(iv)
as follows. Noting dπ(y)= dϑ(y)

ln y we can reformulateπ(x) and
then integrate by parts:

π(x) =

∫ x

2−

dϑ(t)
ln t

=
ϑ(x)

lnx
+

∫ x

2−

ϑ(t)

t ln2 t
dt .

Performing the same for Li(x) =
∫ x

2
dt

ln t and subtracting it gives

π(x) − Li(x) =
ϑ(x)− x

lnx
+

∫ x

2−

ϑ(t)− t

t ln2 t
dt .

By the bound forϑ∗ we can bound the first summand with the
desired 1

8π

√
x ln x. It is obvious that the integral term is negligi-

ble and a better analysis shows that it does not even influencethe
constant.

2. Riemann’sζ-function

No version of Theorem 1.2 was provable beforeRiemann(1859)
found the fundamental connection between primes and the now
so-called Riemannζ-function:

ζ(s) =
∑

n≥1

1

ns
for ℜs > 1(2.1)

=
∏

p

1

1− p−s
for ℜs > 1(2.2)

=
1

1− 21−s

∑

n≥1

(−1)n+1

ns
for ℜs > 0.(2.3)

=
Γ(1− s)

2πi

∫

P

exp(s ln(−z))
exp(z)− 1

dz for s 6= 1,(2.4)

whereP denotes a path ‘once around the positive real axis’, that
is, it starts at∞ + iδ travels to0 + iδ then circles around0
and finally travels from0 − iδ back to∞− iδ for some smallδ
(which excludes any poles which are not on the axis). Next, the
ζ function fulfills the functional equation

ζ(s) = 2sπs−1 sin
(πs

2

)

Γ(1− s)ζ(1 − s).(2.5)

Riemann(1859) introduced the function

ξ(s) := (s− 1)π− s
2Γ
(s

2
+ 1
)

ζ (s)(2.6)

=
1

2
s(s− 1)π− s

2Γ
(s

2

)

ζ (s) ,

which is defined for alls ∈ C and has no poles. Now, the func-
tional equation can be expressed as

ξ(s) = ξ(1− s).(2.7)

Due to the functional equationζ can be extended to the entire
complex plane with the only, single pole ats = 1. The zeroes
of the sine function at negative integers (the non-negativezeroes
are cancelled with poles ofΓ, the zero ats = 0 with the pole
of ζ), or in theξ form the single poles of theΓ function at non-
positive integers, imply thatζ hastrival zeros at even negative
integers−2N>0. In other words,ξ has no pole and only zeroes
with Re(s) ∈ [0, 1]. Moreover,ξ(12 + it) is real fort ∈ R.

One of the two first proofs3 of the prime number theorem The-
orem 1.2 is based on the fact thatζ has no zeroes on the line
whereℜs = 1, whichHadamard(1896) proved by an ingenious
trick. He observed that forx > 1 andt ∈ R we have

|ζ(x)3ζ(x + it)4ζ(x + 2it)|

= exp




∑

n≥2

2Λ(n)
ln n

nx
(1 + cos(t lnn))2



 ≥ 1
(2.8)

has absolute value at least1 for all x > 1. (Note that2(1 +
cos(t lnn))2 = 3 + 4 cos(t lnn) + cos(2t lnn), explaining the
clever choice of the exponents3, 4, 1.) If now ζ(1 + it) were
zero then the mentioned product would also have a zero there
(the triple pole would meet an at least four-fold zero). But taking
the limit x→ 1 then leads to a contradiction.

This simple fact implies the prime number theorem with an
error bound of order

O(xexp(−c
√

ln x))

on the errorπ(x)− Li(x). Since then the prime number theorem
has been improved repeatedly by establishing larger zero-free re-
gions within the critical strip[0, 1] + iR.

3. Relations

Riemann(1859) found an explicit formula forπ using the zeroes
of theζ-function:

π∗
0(x) = Li(x)−

∑

̺

Li(x̺) +
∫ ∞

x

dt
t(t2 − 1) ln t

− ln 2,

(3.1)

where the sum runs over all zeroes ofζ with real part between
zero and one.4 A more elegant variant of (3.1) is byvon Man-
goldt (1895)

ϑ∗0(x) = x−
∑

̺

x̺

̺
− 1

2
ln

(

1− 1

x2

)

︸ ︷︷ ︸

=
∑

n≥1
x−2n

−2n

− ln(2π)
︸ ︷︷ ︸

= ζ′(0)
ζ(0)

.(3.2)

3The other is byde la Vallée Poussin(1896).
4Actually, this is only correct if Li(x̺) is considered an imprecise shortcut

for Ei(̺ ln x) where Ei(z) = γ + ln(z) + Ei0(z), Ei0(z) =
∑

k≥1
zk

k!·k
=

∫ z
0

exp(t)−1
t

dt=
∫ 1
0

exp(uz)−1
u

du, is the exponential integral.ii The problem

is how the analytic continuation is done. Forz = x̺ on the way fromxℜ(̺) til
x̺ we would run 1

2π
ℑ(̺) times around zero, a branch point of the logarithmic

integral Li. However, in the form Ei(̺ lnx) we just run in a strait line from
ℜ̺ · lnx to ̺ lnx without circling around a branch point.

Entwurf 3 LATEX 2ǫ(primeflux): August 10, 2011,1745
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4 Michael Nüsken

To obtain a more explicit expression for the prime counting func-
tion π itself, we can use its relation toπ∗ and obtain:

π0(x) = R(x)−
∑

̺

R(x̺)− 1

ln x
+

1

π
arctan

π

ln x
,(3.3)

where

R(x) =
∑

n≥1

µ(n)

n
Li(x

1
n ) = 1 +

∑

k≥1

(ln x)k

k!kζ(k + 1)
.(3.4)

The second description ofR converges fast.Kulsha(2008) gives
a proof of (3.3) on the basis of (3.1). The problematic part isthe
conditional convergence of the sum over the non-trivial zeros.iii

Proofs of Riemann’s formula (3.1) can be found in many text-
books on analytic number theory. However, most modern pre-
sentations prove the more elegant version (3.2) ofvon Mangoldt.
A classical textbook covering both isEdwards(1974). One quite
precise account can be found inKunik (2005), who also derives
(3.1) from (3.2). The only available proof for (3.3) seems tobe
by Kulsha(2008), which is completely based on known formu-
las from several sources. These proofs often use quite precise
bounds, which were stated byRiemann(1859) and proved by
von Mangoldt(1905), on the numberN(T ) of zeroes of theζ-
function within a bounded region[0, 1] + i[0, T ]:

N(T ) =
T

2π
ln
T

2π
− T

2π
+O(lnT ).(3.5)

Let us at least give an idea of the connection between zeros
of ζ and the number of primes. We start with the Euler product
representation ofζ and rewrite this in the form5

ln ζ(s) =
∑P

p

∑

k≥1

1

k
p−ks.(3.6)

This is a connection between all ofζ and all primes. We
still need to ‘select’ the primes below some boundx. This is
achieved using the Mellin transform of the Heaviside function
ϕ(u) = H(1− u) flipped about12 . The Mellin transform maps a

functionf defined at least onR>0 with f(x) = f(x−)+f(x+)
2 to

a functionMf by (Mf)(s) =
∫∞
0 f(u)us du

u . Like the Fourier
transform, which is a close relative6, the Mellin transform has
an inverse:f(s) = 1

2πi

∫ a+i∞
a−i∞ (Mf)(s)u−s ds. For the named

step functionϕ given by

ϕ(u) =







1 if u < 1,
1
2 if u = 1,

0 if u > 1,

(3.7)

we obtain its Mellin transfrom

Φ(s) = (Mϕ)(s)(3.8)

=

∫ 1

0

us−1 du=
1

s
.

5One needs to spend some extra care on the details ifs is not real, but it comes
out as presented here.

6The Mellin transform off is a rotated variant of the Fourier transform of the
functionf ◦ exp: (Mf)(is) =

√
2π(F(f ◦ exp))(s). This can be seen using

a change of variablesu = et: (Mf)(is) =
∫∞
−∞

f(et)eist dt. However,
usually that connection is not used.

Here we obtain

ϕ(u) =
1

2πi

∫ a+i∞

a−i∞
Φ(s)u−s ds(3.9)

provideda is not too small, that is,a > 1 in our case(Edwards
1974, §3.3). Thus the Mellin transform ‘selects’ all terms with
u ≤ x. Applying the inverse transform tox

s

s times (3.6) yields:

1

2πi

∫ a+i∞

a−i∞

xs

s
ln ζ(s) ds

=
∑P

p

∑

k

1

k

1

2πi

∫ a+i∞

a−i∞

1

s

(
pk

x

)−s

ds

=
∑P

p

∑

k

1

k
H(1− x/pk) =

∑P

pk≤x

1

k
.

Read backwards we have Riemann’s formula

π∗(x) =
1

2πi

∫ a+i∞

a−i∞

xs

s
ln ζ(s) ds .(3.10)

It is now obvious to a complex analyst that the zeroes ofζ must
play a decisive rôle as these are the values where the integrand
has poles.

Von Mangoldtproposes another variant(Edwards 1974, §3.2).
Instead of the Euler product formula itself, he starts with its log-
arithmic derivative, that is, compute the derivative of (3.6):

−ζ
′(s)

ζ(s)
=
∑

n≥2

Λ(n)n−s =

∫ ∞

0

x−s dϑ∗(x) .(3.11)

By suitable inverse transformation this leads to

ϑ∗(x) =
1

2πi

∫ a+i∞

a−i∞
− ζ′(s)

ζ(s)
xs

ds
s
.(3.12)

The integral can be reevaluated based on the zeros of its inte-
grand7 which ends up in (3.2).

4. Fluctuations

Many definitions for displaying the fluctuations are around.
Gourdon & Sebah(2001) propose

θ(x) =
π(x) − Li(x)
√

2x ln ln x
lnx

(4.1)

obviously based on Theorem 1.2(v). We have analyzed

∆Schoenfeld(x) =
π(x) − Li(x)

1
8π

√
x ln x

(4.2)

based on Theorem 1.2(iv) and verified that|∆Schoenfeld(x)| ≤ 1
for x ≤ 240. Kulsha(2008) considers

∆(x) =
π0(x) −

(
R(x)− 1

lnx + 1
π arctan π

lnx

)

√
x

lnx

(4.3)

7

− ζ′(s)

ζ(s)
=

s

s− 1
−

∑

̺

s

̺(s− ̺)
−

∑

k≥1

s

−2k(s+ 2k)
− ζ′(0)

ζ(0)
.
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Prime flux 5

based on (3.3) and, probably, the observation that the second
largest term in the definition is12 Li(x) is asymptotically equal

to
√
x

lnx . Notice that we only have∆(x) ∈ O
(
ln2 x

)
under the

Riemann hypothesis by Theorem 1.2(iv). Even in the model by

Cramér(1935, 1937) we only expect|∆(x)| .
√

lnx
2 ln ln x . Nev-

ertheless, plots forx up to276 seem to indicate that|∆(x)| ≤ 1,
which is definitely wrong in the long run.

Despite the contemporal believe thatπ(x) < Li(x), Lit-
tlewood (1914) observed thatπ(x) − Li(x) changes sign in-

finitely often and even exceedsΩ±
(√

x
ln x ln ln ln x

)

. Skewes

(1933) proved that the first sign change occurs before

exp(exp(exp(79))) < 1010
1034

(under Riemann), a bound which
has been improved to1.39822 ·10316 by Bays & Hudson(2000).
Based on extensive calculations using up to2 · 1010 critical
zeroes,Demichel(2005) suggests that the first crossover point
is near the slightly smaller value1.397162914 · 10316. Kot-
nik (2008) claims based on computer calculations that the first
crossover point is beyond1014.

Moreover,Wintner(1941) showed that the density ofx-values
with π(x) > Li(x) is positive, andRubinstein & Sarnak(1994)
proved that this proportion is at least2.6 · 10−7.

By definitionR(x) is about12 Li(
√
x) ∼

√
x

lnx larger than Li(x)
and or1 within ∆(x). Thus∆(x) must become larger than1
infinitely often.

4.1. A remark on beauty and truth. Kotnik (2008) discusses
whether Li(x) or r(x) := R(x) − 1

ln x + 1
π arctan π

ln x is a bet-
ter approximation forπ(x). The problem is that Li andr are
much closer together than the maximal fluctuations ofπ. A way
out could be to consider the ‘average’ error

∫ x

2 (π(u)− r(u)) du
versus

∫ x

2 (π(u)−Li (u)) du. By the results ofLittlewood(1914)
I guess that again both terms oscillate much more than the differ-
ence and so probably no statement can be made. A variant would
use relative errors instead of absolute errors (so divide both ap-
proximately by x

lnx ). Unfortunately, then the difference between
r and Li tends to zero. So the absolute error sees too much and
the relative error too few. Rescaling with

√
x

ln x , which is the order

of the difference Li(x) − r(x) ≈ 1
2 Li(x

1
2 ). So consider∆(x)

in favour ofr andΞ(x) := π0(x)−Li(x)√
x

ln x

in favour of Li. Asymp-

totically, Ξ(x) ∼ ∆(x) + 1. This difference is not much in the
light of Littlewood (1914) implying both exceeding ln ln lnx in
both directions infinitely often. But the average value of these
quantities might be more informative. So consider

Q(π − f)(x) =

∫ x

2
π(u)−f(u)√

u
ln u

du
u

∫ x

2
du
u

(4.4)

as a measure of quality. Notice that we use a logarithmic mean
here as we expect the fluctuations to oscillate only logarithmi-
cally, that is, likex 7→ sin(u lnx). My guess is thatr is not only
the more beautiful approximation forπ, but this will quantify
howr approximatesπ better than Li.

As the formula work is much easier invon Mangoldt’s variant,
consider (3.2) and lett(x) := x− 1

2 ln
(
1− 1

x2

)
− ln(2π). Now,

we try to get hold ofqϑ∗−t by considering the summands in the
remaining sum of the explicit formula (3.2). We have to adapt

Q by removing the lnu factor from the denomiator, call thisQ∗.
Actually, one can check that, assuming Re̺ = 1

2 ,

Q∗
(

u 7→ u̺

̺
+
u̺

̺

)

(x) ∈ O
(

1

̺̺ lnx

)

,(4.5)

whereas the difference of Li andr translated here amounts to
something like

Q∗ (u 7→
√
u
)
(x) = 1(4.6)

Thus the influence of the difference should be visible inQ∗, and
thus also the difference ofr and Li inQ:

CONJECTURE4.7. The average quality|Q(π− r)| is asymptot-
ically smaller than|Q(π−Li)|. In this sense, Riemann’s formula
provides a better approximation than the logarithmic integral Li .

Orthogonal to this approach, one might consider the sign dis-
tribution of π − Li. As mentioned above,Rubinstein & Sarnak
(1994) prove that the positivity domain ofπ − Li has logarith-
mic density of about2.6 · 10−7. It seems definite that it is much
smaller than12 . The sign density forπ− r, however, seems to be
uninvestigated. It thus seems natural to state the

CONJECTURE4.8. The logarithmic density of the positivity do-
main ofπ(x)−Li(x) is less than10−6. However, the logarithmic
density of the positivity domain equals12 for each of the three
functions

◦ π(x) − r(x),

◦ π∗(x) −
(

Li(x) +
∫∞
x

dt
t(t2−1) ln t − ln 2

)

,

◦ ϑ∗(x) −
(
x− 1

2 ln
(
1− 1

x2

)
− ln(2π)

)
.

Mind that this conjecture is based solely on beauty and a some
tiny evidence.

Entwurf 5 LATEX 2ǫ(primeflux): August 10, 2011,1745
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6 Michael Nüsken

Part II

Progressed estimates
5. Counting primes in arithmetic progressions

Let q be any number anda coprime toq. Consider the number
πa+qZ(x) = π(x, q, a) of primes less than or equal tox that are
congruent toa moduloq, or

πa+qZ(x) =
∑P

p≤x
p∈a+qZ

1.(5.1)

Correspondingly, we defineπ∗
a+qZ(x), ϑq+aZ(x), ϑ∗q+aZ(x).

Here, we are collecting estimates to these quantities.

THEOREM 5.2 (Rubinstein & Sarnak 1994). We have

ϕ(q)π(x, q, a) = π(x) −
(
a

q

) √
x

lnx

+
1

ln x

∑

χ6=χ0

χ(a)ϑ∗χ(x)

+O
( √

x

ln2 x

)

,

whereϑ∗χ(x) =
∑

n≤x

χ(n)Λ(n) andχ0 is the principal character.

Recall that a Dirichlet characterχ is a functionχ : N → C

which is multiplicative, periodic, and hasχ(n) 6= 0 iff n is co-
prime to the period. Every Dirichlet character of periodk induces
a character ofZ×

k and vice versa. This is why the period is usu-
ally called modulus. The smallest period of a character is called
its conductor. A character is primitive for a modulusk if the
character has no smaller periiod. The unique character of period
1 is the principal characterχ0 and is given byχ0(n) = 1 for
all n.iv

⋆¿⋆“Note that the characters of modulusk form a group and
linearly span allk-periodic functionsN → C.” is wrong! Find
the correct statement!⋆?⋆ We thus consider the DirichletL-
functions given by

L(s, χ) =
∑

n≥1

χ(n)

ns
=
∏

p

(
1− χ(p)p−s

)−1
(5.3)

for ℜs > 1. Clearly,L(s, χ0) = ζ(s). By the definition it is clear
thatL(s, χ) is analytic forℜs > 1, and by the Euler product
description it is evident thatL(s, χ) has no zeroes forℜs > 1.

Consider a primitive characterχ of modulusk and definea ∈
{0, 1} byχ(−1) = (−1)a. Analoguously toξ for ζ, consider

Λ(s, χ) =
(π

k

)−(s+a)/2

Γ

(
s+ a

2

)

L(s, χ).(5.4)

Note thatξ(s) = s(s−1)
2 Λ(s, χ0). Corresponding to the func-

tional equation of theζ-function one finds the functional equa-
tion

Λ(1− s, χ) =
ia |τ(χ)|
τ(χ)

Λ(s, χ).(5.5)

The Gauß sumτ(χ) =
∑

n∈N<k
exp

(
2πin
k

)
χ(n) has absolute

value
√
k. This functional equation proves thatΛ(s, χ) has no

zeroes (nor poles) outside the strip[0, 1]× iR.

GENERALIZED RIEMANN HYPOTHESIS. For any Dirichlet
characterχ all zeroes ofL(s, χ) in the strip[0, 1] + iR have real
part 12 .

The special caseχ = χ0 is the Riemann hypothesis.
⋆¿⋆Weil’s explicit formula⋆?⋆

LATEX 2ǫ(primeflux): August 10, 2011,1745 6 Entwurf



DR
AF

T
—

Do
no

t d
ist

rib
ut

e!

Prime flux 7

Part III

Variations
6. Zeta functions for P-smooth numbers (?)

Bernier(2011) considers partial zeta functions. We rephrase his
questions in our language. LetA be any subset ofR. A numbern
is calledA-grained if all its prime factors are inA. Of course, we
can always chooseA ⊂ P, but we like the additional freedom.
Now define the zeta function ofA.

ζA(s) :=
∑

nA-grained

1

ns
.

This converges absolutely for Re(s) > 1 since
∑

n>1 n
−s does

for s > 1. Bernierasks whether there is an Euler product formula

ζA(s) =
∏

p∈A∩P

(1− p−s)−1.

This answer is easy: Yes, we have this for Re(s) > 1. Moreover,
depending on the setA it may well be that both expressions con-
verge also for other values ofs. BernierrequiresA ∩ P to be
infinite, but if we drop that both expressions are defined all over
C.

QUESTION 6.1. Is there a functional equation foζA?

Bernier motivates this as follows: Consider the number of
primesπA(x) in A less than or equal tox. Now, he claims that
by pickingA suitably one can achieve (under RH) that

|πA(x) − Li(x)| ≤
{

1
8π

√
x

ln x for x < C,

x0.51+ε otherwise,

but there are arbitrarily large valuesx (beyondC, of course) such
that

|πA(x)− Li(x)| > x0.51.

To that end he describes a setA which is all primes minus a very
sparse set of primes. Namely, he picksC as Graham’s number
(which is just some very, very large integer for our purpose), c0 =
nextprime(C), ck := nextprime(2ck−1) and considersA = P \
{ci i ∈ N}.

My feeling is that Li is just the wrong function here and should
be replaced by a suitable variant LiA or Riemann’s versionRA.

Bernierasks further questions, in particular, with the example
A = P \ {2}:

QUESTION 6.2.

(i) ◦ DoesζA have an analytic continuation?

◦ Can one perform Euler-Maclaurin summation on
ζA(

1
2 + it)?, analytic, convergent?

◦ Where are the zeros?

(ii) Is there a von Mangoldt type formula for the summatory
Lambda function?

Well, let’s head for some answers.
In the cofinite case, ie. ifP \ A is finite, ζA(s) =

ζ(s)
∏

p∈P\A(1 − p−s) (for Res > 1 and thus everywhere) and
soζA is analytic everywhere but at its single poles = 1. Its zeros
are thus exactly those ofζ and additional ones on the imaginary
axis: 1 − p−s = 0 iff s ∈ 2π

ln p iZ ⊂ iR. This reasoning does not
work for non-cofinite setsA,

In the finite case, ie. ifA ∩ P is finite, ζA is merely a finite
product of factors(1− p−s)−1. These factors have no zeros and
single poles at2πln p iZ.

In the cofinite case the summatory Lambda function should be

ϑ∗A(x) =
∑

pk≤x
p∈A∩P

ln p = ϑ∗(x) −
∑

p∈P\A
ln p

⌈
lnx
ln p

⌉

whose second part is more or less#(P \ A) lnx. The original
von Mangoldt formula (3.2) turns into

ϑ∗A(x) = x−
∑

p∈P\A
ln p

⌈
lnx
ln p

⌉

−
∑

̺

x̺

̺

− 1

2
ln

(

1− 1

x2

)

︸ ︷︷ ︸

=
∑

n≥1
x−2n

−2n

− ln(2π)
︸ ︷︷ ︸

= ζ′(0)
ζ(0)

.

A consideration of a direkt proof of (3.2) in this context should
yield more general formulas.
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Part IV

Algorithms
7. Prime counting algorithms

Relevant literature:

◦ Sorenson(1998).

◦ Pritchard(1982, 1994).

7.1. The sieve of Eratosthenes.

7.1.1. Basic sieve. Let’s describe the version to sieve an inter-
val [x, x− L[ := Z<x \ Z<x−L. We start with an array of bits
indexed by the numbers in the interval. At first we set all bitsto
1. Now, for each primep less or equal to

√
x for k = 2p while

k ≤ x in steps ofp set the bitk to 0.

ALGORITHM 7.1. Sieve of Eratosthenes for an interval.

Input: Interval boundx, interval lengthL.
Output: Arraya[0..L] of bits such thata[i] = 1 iff x − L + i is

prime.

1. Initialize an arraya of bits indexed from0..L to all 1.
2. For p prime,p ≤ √

x do 3–4
3. For k = ((L− x) remp), k < x, k+= p do
4. a[k] := 0.
5. Return a

The classical sieve of Eratosthenes would haveL = x − 2 and
the primes for the loop are read of the arraya. This algorithm
needs

time∈ O
(
L ln lnx+

√
x
)
, space∈ O (L) .

To speed up the algorithm we can decrease the memory re-
quirements by a factor two by only storing odd numbers in the
array. This amounts to predicting the effect of the smallest
prime. Extending this we only consider numbers ina+ Zs with
s =

∏
P

p≤y p, a ∈ Z×
s . This saves a factor

∏
P

p≤y(1 − 1
p ). In

practice, this is used withy = 2 to y = 13. ⋆¿⋆Is that less than
Pritchard 1982, 1994?⋆?⋆

7.1.2. Segmented version. The first problem with the basic
sieve is its memory usage. The segmented sieve resorts by cut-
ting the target interval into smaller segments of lengthS, say
S|L. The most costly remaining operation is the division for the
inititial k in the inner loop. This would now have to be executed
L/B times for every prime. To save this cost we introduce a ta-
blek[p] carrying this information from block to block. Initialize
k[p] = (L− x) remp, this will be the only divisions. For eachp
strike outa[k[p] + tp] for t = 0 until k[p] + tp exits the current
block. This first overshooting value minus the block lengthB
store ink[p]. Once a block has been fully processed output it and
reuse the array for the next block. This algorithm needs

time∈ O
(
L ln ln x+

√
x
)
, space∈ O

(
S +

√
x
)
.

7.1.3. Cache-optimized segmented version.To further in-
crease the use of available resources we put the primes paired
with the segment offsetk[p] in buckets attached to each segment.
The bucket size is taylored to the size of the processor cache.
For every prime in a bucket associated to the current block we
strike outa[k[p]+ tp] := 0 for t until k[p]+ tp leaves the current
block. From the first overshooting valuek[p] + tp we subtract
the segment sizeS until it is less thanL and put the prime with
this offset in a bucket associated to the corresponding segment.
Actually, small primes might be treated differently as theytouch
every segment whereas larger primes jump over many segments.
This algorithm still needs

time∈ O
(
L ln lnx+

√
x
)
, space∈ O

(
S +

√
x
)
,

the gain lies in the optimized use of the processor’s cache.
⋆¿⋆Pritchard’s wheel sieve with time∈ O

(
1

ln ln xL+?
)
,

space∈ O (?).⋆?⋆

7.2. The quadratic sieve. Relevant literature:

◦ Atkin & Bernstein(2004).

◦ Galway(2004).

The quadratic sieve makes use of the fact that primes of the
form 1+ 4k are a sum of two squares in an odd number of ways,
whereas squarefree composite numbers are a sum of two squares
in an even number of ways. More general we have the following
theorem inGalway(2004) afterAtkin & Bernstein(2004):

THEOREM 7.2. Considern ∈ N with nmod12 ∈ Z
×
12 =

1, 5, 7, 11. Choose the case withC ∋ nmod12:

(i) C = {1, 5}, R = {(u1, u2) ∈ R u1 > u2 > 0},
Q(u1, u2) = u21 + u22.

(ii) C = {7}, R = {(u1, u2) ∈ R u1, u2 > 0}, Q(u1, u2) =
3u21 + u22.

(iii) C = {11}, R = {(u1, u2) ∈ R u1 > u2 > 0},
Q(u1, u2) = 3u21 − u22.

Choose the case withn ∈ C and let P(n) =
{
(u1, u2) ∈ Z2 ∩R Q(u1, u2) = n

}
. Then

n prime ⇐⇒ n squarefree∧#P(n) odd. �

This result can be turned into an algorithm to sieve an interval.

ALGORITHM 7.3.
Input: Interval boundx, interval lengthL.
Output: Arraya[0..L] of bits such thata[i] = 1 iff x − L + i is

prime.

1. Initialize an arraya of bits indexed from0..L to all 0.
2. For (C,R, Q) do 3–5
3. For (u1, u2) ∈ R ∩ Z2 ∩Q−1([x− L, x]) do 4–5
4. n := Q(u1, u2), i := i− (x − L).
5. If nmod12 ∈ C then ai := 1− ai
6. For q = 3.. ⌊√x⌋ do 7–8

7. For m =
⌈
x−L
q2

⌉

.. xq2 do
8. amq2 := 0.

LATEX 2ǫ(primeflux): August 10, 2011,1745 8 Entwurf
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9. Return a

Some care is necessary to implement theu loop to avoid un-
necessary multiplications (or even square roots). This algorithm
needs

time∈ O
(
L ln lnx+

√
x
)
, space∈ O (L) .

Segmentation can be employed here. The cache optimiza-
tion is not clear to me. . .Galway(2004) proposes a dissection
method. He dissects theu area and . . .
⋆¿⋆HERE⋆?⋆

7.3. The combinatorial method. Relevant literature:

◦ Oliveira e Silva(2006).

◦ Lagarias, Miller & Odlyzko(1985).

◦ Deleglise & Rivat(1996).

We now refrain from listing primes. The combinatorial method
is the first that determines the numberπ(x) of primes up tox
without listing all those primes.

For any (positive) realx we consider the count

πK
S (x) = #

{

n ∈ N≤x
∃k ∈ K : ∃q1, . . . , qk ∈ S ∩ P :

n = q1 · · · qk

}

of natural numbers that for somek ∈ K have exactlyk prime
factors from the setS. If S contains all (relevant) primes, we may
omit it. Further, we abbreviateπk

S(x) = π
{k}
S (x) andπ≤k

S (x) =

π
N≤k

S (x). In particular,π(x) = π1
R
(x). Finally, we denote the

a-th (natural) prime number bypa, for instance,p1 = 2, p2 = 3,
p3 = 5. As a special case, we setp0 := 1.

Elsewhere used notation translates as follows:ϕ(x, a) =
πN
>pa

(x) counts thepa+1-rough numbers,ϕk(x, a) = πk
>pa

(x)
counts thepa+1-rough numbers with exactlyk prime factors.

Clearly, πk
>A (x) = 0 as soon as nextprime(A + 1)k > x,

which is implied byAk ≥ x, and consequently

πN

>A (x) =
∑

0≤k≤⌊ ln x
ln A⌋

πk
>A (x) .(7.4)

Observe thatπ0
>A (x) = 1 for x ≥ 1 andπ1

>A (x) = π(x) −
π(A). Combining all that yields

π(x) = πN

>A (x) + π(A)− 1−
∑

2≤k≤⌊ ln x
ln A⌋

πk
>A (x) .(7.5)

If we chooseA =
√
x then the sum is actually empty; though

lnx/ lnA = 2 allows the summandπ2
>A (x), this term is actu-

ally zero as it counts numbers that are a product of two primes
larger thanA. So in that case we ‘only’ have to countπN

>
√
x
(x)

andπ(
√
x). The latter can be done using the standard sieve of

Eratosthenes in timeO∼
(

x
1
2

)

. What about the former then? If

we chooseA smaller, say somewhere between3
√
x and

√
x still

the sum has only the summandπ2
>A (x). Lehmer usedA = 4

√
x

so he has to countπ3
>A (x) as well.

7.3.1. Countπ2
>A (x). We assume that3

√
x ≤ A ≤ √

x. Now
we can express

π2
>A (x) =

∑P

A<p≤x

∑P

p≤q≤x

χ (pq ≤ x)

=
∑P

A<p≤√
x

∑P

p≤q≤x/p

1.

Substituting the inner sum withπ(x/p)− (π(p)− 1) and noting
that the second part merely is

∑

π(A)<r≤π(
√
x)(r−1), we finally

obtain the expression

π2
>A (x) =

(
π(A)

2

)

−
(
π(
√
x)

2

)

+
∑P

A<p≤√
x

π(x/p).(7.6)

To evaluate this, we could using the sieve of Eratosthenes obtain

◦ π(A) with O∼ (A) operations,

◦ π(
√
x) with O∼ (

√
x) operations, and

◦ eachπ(x/p) by sieving up tox/A, cumulating it accounts
for a total of againO(x/A) operations.

This is already more than anything before but we are limited to
at leastO(x/A) operations. Well, so we reuse (7.5) forx

p noting

that the sum collapses since3
√
x ≤ A < p ≤ √

x, and soA2 ≥
x

2
3 > x/p:

π

(
x

p

)

= πN

>A

(
x

p

)

+ π(A) − 1.

So providedA ≥ 3
√
x an efficient computation ofπN

>A (x) and

of πN

>A

(

x/p

)

will give us an efficient computation forπ(x) in

the end as far as we can see by now.

7.3.2. CountπN

>A (x). We start with two observations. First,
πN

>A (x) counts exactly those numbers that are coprime toPA :=
∏

P

p≤A p. This condition is periodic, per interval we count

πN

>A (PA) = ϕ(PA) =
∏P

p≤A(p − 1) numbers, and in casePA

is small with respect tox we can thus benefit from

πN

>A (x) =

⌊
x

PA

⌋

ϕ(PA) + πN

>A

(

x−
⌊
x

PA

⌋

PA

)

.(7.7)

To benefit from this we need to have the valuesπN

>A (x) precom-
puted for a suitably small values forx.

Second, every numbern belowx has a smallest prime factor
pmin(n). ForπN

>pa
(x) the numbern is counted ifpmin(n) > pa.

If instead we count all numbers withpmin(n) ≥ pa, or equiva-
lently pmin(n) > pa−1, we have to subtract (that’s sieving) those
with pmin(n) = pa. But these latter are of the formn = pam
with m ≤ x

pa
andpmin(m) > pa−1. This explains

πN

>pa
(x) = πN

>pa−1
(x) − πN

>pa−1

(
x

pa

)

.(7.8)

Directly or by (7.7),πN
>1 (x) = ⌊x⌋. Together with (7.8) this

leads to the inclusion-exclusion formula

πN

>pa
(x) =

∑

n≤x
pmin(n)≤pa

µ(n)
⌊x

n

⌋

(7.9)
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Obviously,πN
>pa

(x) = 1 if pa ≤ x < pa+1 which allows us to
stop the recursion a step earlier and actually to avoid computa-
tions with result0. Altogether one can turn this into an algorithm
using

time∈ O
( x

ln x

)

, space∈ O
(√

x

lnx

)

.

To reduce thisLagarias, Miller & Odlyzko(1985) try to keep
the computation tree smaller. They setA = α 3

√
x with a care-

fully chosen valueα ≥ 1, fix parametersc and z = x/A =

α−1x
2
3 , and on computation ofπN

>pb
(x′) stop the use of the re-

cursion (7.8) if we reach either

1. an ordinary leave:b = c andx′ ≥ z, or

2. a special leave:x′ < z.

As mentioned earlier, we can use (7.7) when the periodPpb
=

∏P

p≤pb
p is small enough. This will determine the choice ofc.

On the other hand, we can hope countingπN
>pb

(x′) directly if x
gets small, the chosen threshold isz.

Before we get to the details let us describe how to index
the computation tree. The node forπN

>pb
(x′) in the tree either

is defined as a leave or it has two childs, one forπN
>pb−1

(x′)

and the other for−πN
>pb−1

(
x′

pb

)

. Each node in the tree thus is

of the formµ(n)πN
>pb

(
x
n

)
with n being a product a subset of

{pb+1, . . . , pa}. In an ordinary leave we thus havex′ = x/n
with n ≤ x/z = A. In a special leave we haven > A. See
Figure 7.1 for an example.

7.3.3. Ordinary leaves. The aim here is to deal with all ordi-
nary leaves simultaneously. Their indices are precisely given by
those natural numbers withn ≤ A, µ(n) 6= 0, pmin(n) > pc. So

+πN
>pa

(x)

+πN
>pa−1

(x)

+πN
>pa−2

(x)

+πN
>pa−3

(x)

−πN
>pa−3

(

x
pa−2

)

−πN
>pa−2

(

x
pa−1

)

−πN
>pa−3

(

x
pa−1

)

+πN
>pa−3

(

x
pa−1pa−2

)

−πN
>pa−1

(

x
pa

)

−πN
>pa−2

(

x
pa

)

−πN
>pa−3

(

x
pa

)

+πN
>pa−3

(

x
papa−2

)

+πN
>pa−2

(

x
papa−1

)

Figure 7.1: Computation tree whenc = a − 3 andz = x
papa−2

.
Most leaves are ordinary, the boxed one is special.

altogether the special leaves contribute toπN
>pa

(x) the value

S0 =
∑

n≤A
pmin(n)>pc

µ(n)πN

>pc

(x

n

)

.(7.10)

A modification of the sieve of Eratosthenes gives us forn ∈ N<A

the value[µ(n), pmin(n)]. For eachn ∈ N<A with pmin(n) > pc
we now computeπN

>pc

(
x
n

)
using (7.7). Notice that there are

at mostA ordinary leaves. So this amounts to a total time of
O (A ln lnA), most of which is needed for the sieving. Actually,
c is considered constant here, sayc = 7, since the precomputa-
tion of πN

>pc
(x′) for x′ ∈ N<Ppc

otherwise is too costly. Well,
maybe we can allow a largerc if we employ (7.8) forπN

>b (x
′)

with b > 7, say.

7.3.4. Special leaves. Subdivide the special leavesπN

>b

(
x
n

)

once more:

◦ First case,p2b+1 ≤ A: Cheap.

◦ Second case,p2b+1 > A. Here n = pb+1pd for some
π(
√
y) < d ≤ a. Subdivide into

– Trivial leaves: Each trivial leave contributes1. So we
merely need to count them. That amounts to counting
primes. Some can be clustered, some are sparse.

– Easy leaves: Can be computed by counting primes us-
ing (7.4) with summandsk = 0 andk = 1 only (or
equivalently (7.5) with empty sum).

– Hard leaves: For these you have to computeπN

>b

(
x
n

)

the hard way.

7.4. The analytical method. Relevant literature:

◦ Lagarias & Odlyzko(1987).

◦ Galway(2004).

Riemann’s identity

π∗
0(x) =

∑

pk≤x

1

k
=

1

2πi

∫ a+i∞

a−i∞

xs

s
ln ζ(s) ds(7.11)

with a > 1 arbitrary may also be used to computeπ(x) via (1.7).
The integral here has to be understood as a path integral along the
line with ℜs = a. However, it turns out that a good approxima-
tion of the integral on the right is difficult to obtain since on the
lineℜs = a, bothxs and lnζ(s) oscillate, and the integral is not
absolutely convergent.Lagarias & Odlyzko(1987) say that the
convergence can be estimated but not in a sufficient way. Instead
they resort to changing the formulae:

∑

pk≤x

c(pk)

k
=

1

2πi

∫ a+i∞

a−i∞
F (s) ln ζ(s) ds(7.12)

wherec(u) andF (s) are a Mellin transform pair, that is,

c(u) =
1

2πi

∫ a+i∞

a−i∞
F (s)u−s ds ,(7.13)

F (s) =

∫ ∞

0

c(u)us−1 du .(7.14)
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If we usec = c0 with c0(u) = 1 for u < x and c0(u) = 0
for u > x we obtain (7.11). However, thenF (s) = xs

s which
makes the intgral difficult to compute. Instead, we modifyc0
in an interval]x− y, x[ in a way that makesF decrease rapidly
as |ℑs| → ∞. This then allows a numerical evaluation of the
integral. Of course, we do not obtainπ(x) or π∗(x) then but the
difference toπ∗(x) only depends on the prime powers within the
interval]x− y, x[ on whichc differs fromc0:

π∗(x) −
∑

pk≤x

c(pk)

k
=

∑

x−y<pk≤x

1− c(pk)

k
.(7.15)

This can be computed via sieving, say, in abouty steps, which is
ok provided thaty is not too large.Lagarias & Odlyzko(1987)
use ac for which the contribution of the region with|ℑs| ≥ T
is negligible forT ≥ x

y . Computing the integral numerically
now requiresO (Txε) evaluations of the integrand. This boils
down to evaluateζ at these points providedF is sufficiently easy
to compute.Odlyzko & Schönhage(1988) describes how multi-
evaluation ofζ at valuesa + it for u ≤ tu + uβ can be done

within O
(

u
1
2

)

time andO
(
uβ
)

space for anyβ ∈
[
0, 12
]
. This

leads to an algorithm using

time∈ O
(

x
3−2b

5 +ε
)

, space∈ O
(
xb+ε

)

where we can chooseb ∈
[
0, 14

]
.

Galway(2004) proceeds similarly but uses a different kernel
function. Let

ϕ(u;x, λ) =
1

2
erfc

(
ln u

x√
2λ

)

(7.16)

based on the complementary error function erfc(z) =
2√
π

∫∞
z

exp(−r2) dr. The Mellin transform of this kernel func-
tion is

Φ(s;x, λ) = exp(
λ2s2

2
)
xs

s
.(7.17)

Defineπ∗(x;λ) =
∑

pk≤x
1
kϕ(p

k;x, λ). Forλ = 0 this is pre-
cisely π∗(x) with its standard definition. The inverse Mellin
transformation provides us with the integral description

π∗(x;λ) =
1

2πi

∫ a+i∞

a−i∞
Φ(s;x, λ) ln ζ(s) ds ,(7.18)

that turns out to be well to approximate. On the other hand the
difference toπ∗(x) can be computed directly,

π∗(x)− π∗(x;λ) =
∑

pk

1

k

(
ϕ(pk;x, 0)− ϕ(pk;x, λ)

)
.

(7.19)

Other than with the kernel using byLagarias & Odlyzko(1987)
this sum is not finite, however its major contribution come from
finitely many primepowers close tox. (Galway 2004, §2.5)ar-
gues that this kernel is optimal.

To make everything work one needs to bound errors for the
approximation of the integral (7.18) and the approximationin the
sum (7.19). Choosing parameters such that the common error is
comfortably smaller than12 , the computation can be run. Finally,
the computation of the sum can be combined with the final step:

π(x) = π∗(x) −∑k≥2
1
kπ
(

x
1
k

)

.

7.5. Counting modulo2. Relevant literature:

◦ Lifchitz (2001).

8. Algorithm to evaluate Riemann’sζ function

Relevant literature:

◦ Odlyzko & Schönhage(1988).

9. Algorithm to approximate the number Ψ(x, y)
of y-smooth integers belowx

SeeHunter & Sorenson(1997). Based onHildebrand & Tenen-
baum(1986) they essentially only need to compute values and
derivatives ofζ≤y(s) :=

∏

p≤y(1− p−s)−1 to obtainΨ(x, y) up

to a relative error of orderO
(

ln y
ln x + y

ln y

)

. This has been further

improved inParsell & Sorenson(2006).
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Part V

Diverse

10. A monotonicity property

Sondow & Dumitrescu(2010) claim that in any zero-free, right
open half-planeξ is isotone on any horizontal line. They do not
claim that givent ∈ R such that there is no zero ofξ on the half
lineL = R> 1

2
+ it the functionR> 1

2
→ R, s 7→ |ξ(s+ it)|2 is

isotone.

If that is true then also the Riemann hypothesis holds: Sinceξ
is analytic the functionα : R> 1

2
× R → R, (s, t) 7→ ∂

∂s |ξ(s +
it)|2 is continuous. Assume that RH is false. Then we have
̺ = σ + it with ξ(̺) = 0 andσ > 1

2 . Since|ξ|2 ≥ 0 we
haveα(σ, t) = 0 and there is a smallε ∈

]
0, σ − 1

2

[
such that

α(σ − ε, t) < 0. Now however there exists aδ > 0 such that
α(σ−ε, t+δ) < 0 but there is noξ zero on the lineR> 1

2
+i(t+δ)

since the zeros ofξ are discrete. But this contradicts the above
statement.
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Figure 10.1: Contour lines of
∏ |s− ̺i| for the depicted four

points̺i

The idea of the above comes from the product formula forξ:

ξ(s) =
1

2

∏

̺

(

1− s

̺

)

(10.1)

= c
∏

̺

(

1− s− 1
2

̺− 1
2

)

Actually, ξ is isotone on
[
1
2 , 1
]

(Proof?). Now, any zero̺ with

Re(̺) > 1
2 causes the absolute value

∣
∣
∣1− s

̺

∣
∣
∣ =

|s−̺|
|̺| to decrease

and no finite number of roots on the critical line can repair this
on a horizontal line close to̺. Of course, this factor has to be
combined with its mirrored versions:

∣
∣
∣
∣

(

1− s

̺

)(

1− s

¯̺

)(

1− s

1− ̺

)(

1− s

1− ¯̺

)∣
∣
∣
∣

If ̺ is large this is close to
∣
∣
∣
∣
1− s

(
1

̺(1− ̺)
+

1

¯̺(1− ¯̺)

)∣
∣
∣
∣

=

∣
∣
∣
∣
1− s

(
1

(σ + it)(1− σ − it)
+

1

(σ − it)(1− σ + it)

)∣
∣
∣
∣
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A. TODO

◦ ⋆5.1:6 “Note that the characters of modulusk form a group
and linearly span allk-periodic functionsN → C.” is
wrong! Find the correct statement!

◦ ⋆5.2:6 Weil’s explicit formula

◦ ⋆7.1:8 Is that less thanPritchard 1982, 1994?

◦ ⋆7.2:8 Pritchard’s wheel sieve with time∈ O
(

1
ln lnxL+?

)
,

space∈ O (?).

◦ ⋆7.3:9 HERE.

Notes

iMore generally: Ifc(x, 1) = x, c(c(x, n),m) = c(x, nm), g(c(x, n)) =
0 for n > x, andf(x) =

∑

n≤x g(c(x, n)) then

g(x) =
∑

n≤x

µ(n)f(c(x, n)).

For examplec(x, n) = x1/n with anyg that vanishes for arguments less than2
fulfills the requirements. (Since exp( ln x

x
) < 2 is equivalent tox < 2x which is

true forx > 1, the condition forg is also fulfilled.)

PROOF. Start with the right hand side of the claim:
∑

n≤x

µ(n)f(c(x, n)) =
∑

n≤x

µ(n)
∑

m≤x

g(c(c(x, n),m))

=
∑

n≤x

∑

m≤x

µ(n)g(c(x, nm))

=
∑

k≤x

∑

n,m≤x
nm=k

µ(n)

︸ ︷︷ ︸

=







1 if k = 1,

0 otherwise.

g(c(x, k))

= g(c(x, 1)) = g(x).

We use thatg(c(x, k)) = 0 where we restrict the sum overk to k ≤ x. �

ii Most sources define

Ei(z) =
∫ z

−∞

exp(t)

t
dt for z ∈ C \ R≤0

Some (including MuPAD 3) define

E1(z) =

∫ ∞

z

exp(−t)

t
dt if z ∈ C \ R≤0

=

∫ ∞

1

exp(−uz)

u
du for ℜx ≥ 0

Unfortunately, these definitions differ in particular at those values where we need
it. And since Ei(x) = −E1(−x) for x > 0 also the branch cut is on different
sides when translated. This leads to Ei(x) = −E1(−x) ∓ iπ for x < 0.

We encounter the exponential integral in form of the logarithmic integral
Li(x) =

∫ x
2

dt
t

. We can express Li(x) = Ei(ln x)−Ei(ln 2) = −E1(− ln x)+
E1(− ln 2), which is only save forx ∈ R 6=0.

iii A guess forϑ:

ϑ0(x) =
∑

n≥1

µ(n)

n
x

1
n −

∑

̺

∑

n≥1

µ(n)

n

x̺/n

̺

−
∑

n≥1

µ(n)

n

1

2
ln

(

1− 1

x2/n

)

−
∑

n≥1

µ(n)

n
ln(2π).

ivExamples:

◦ The principal characterχ0.

◦ The quadratic character
(

·
k

)
modulok.

◦ Supposeα ∈ Z
×
k generatesZ×

k , and ζ ∈ C× is a ϕ(k)-th primitive
root of unity. Then any period-k characterχ is given byχ(αi) = ζsi

for somes ∈ Zϕ(k). In particular, the quadratic character is given by
(

αi

k

)

= (−1)i = ζ
ϕ(k)

2
i.
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