PRIME FLUX
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Abstract. This treatise summarizes various aspects related to prime
counting. This includes pointers to several variants ofRfiene Num-

ber Theorem (Theorem 1.2). Some aspects of the intimatielteckRie-
mann¢-function are sketched and ‘the’ exact formula is described
Further, we sketch several algorithms for counting primesty.

As side tracks, we started investigating primes in aritlengtogres-
sions and other variations.

Keywords. Number theory, prime counting, Riemagnalgorithms.

Subject classification.??

Entwurf 1 IATEX 2¢(pr i mef | ux): August 10, 2011] 742



2 Michael Nisken

Part | (v) ( ) ): If primes were random with
prob(n prime) = - then their counting functioH (z) ful-

Global estimates fils o

o M(z) — Li(x)] < /220N
1. Counting primes Inz

. . asymptotically surely, and even more:
Consider the number(x) of primes less or equal to, or as we

prefer it: L
P prob IimsupM =1|=1
(1.1) m(x) = Z 1. z—oo V2InInz,/f
p<z

H th I ori |  th The prime counting functiomr gets three companions: the
ere the sum runs over all primes(}) less or equal than- Riemann prime counting function* (also denotedl, =, J,

, . :
Whenevera sum runs pveraparampte(p orp; org it shall be_ or as by Riemanry), the Chebyshev function$ and ¢* (also
self understood that it is a sum over primes only. Todayoueri denoted))

estimates for this count are available:

1 A(n)
i - ants: (1.3 =>"1 )=> 7 => T
THEOREM 1.2 (Prime number theorem)ie list a few variants: (1.3) 7 (x) Z;l , o T (w) ;I . 2 nn
() (1852, conjectured by (1798: - P= -
z (1.4) dx) = Zlnp, ¥ () = Z Inp = Z A(n).
m(x) ~ e p<x i new
(ii) (1896, 11896, Here the functionA is defined by
, conjectured by :
(1963, conj Yzaul3(1849 (1.5)
3/5
m(z) € Li(z) + O (z exp <A(|n7$)1//5>) An) = Inp if n = p* for somep € P and somé € N,
(Inlnz) 10 otherwise
X
c Li(z)+ 0O (—)

(@) In* 2 Note that%z) = ;1 for a prime powem = p*. To formulate
for anyk. The presently best known value fdris A = the simple relation between some of these we need the Mdbius
0.2098 ( ap. 566)! function

Here, the logarithmic integrali is given byLi(z) := [, 4t. +1 if nis a product of areven
Other authors usk(z) = [, 4L, which differs fromLi(z) by number of distinct primes,
the additive constanff’ 4t = 1.0451.2 _ ] —1 i nisa product of arodd
W (1.6) p(n) number of distinct primes,
(III) ( 3 Théoréme 1.10, p. 36F0rl’ > 355991 we 0 otherwise, that is, ifn is
have squareful.
Inz |n?$7L “In® = < (z) < mﬂn%jL Ity Forn > 1we havey,  u(d) = 0whereasy’,, u(d) = 1. If
This includes the classical estimater) < 2. nowg(n) =3, f(d) thenf(n) = 3_4,, n(d)g(n/d).
* The prime counting functions are related pairwise by theaequ
(iv) ( D), [ ): If (and only if) the tions
Riemann hypothesis holds then for> 2657 (n) .
un) ., o1 * 1
) 1 1.7) =w(z)= ——=r*(z™), 7 (x)= —7(z™),
|m(x) —li(x)] < gﬁlnz. 7; n ;n
If (and only if) the Riemann hypothesis holds thenfor  (1.8) 9(z) =Y p(n)d*(zv), 9*(z) = Y d(a7).
1451 1 n>1 n>1
[m() = Li(z)] < 87\/5"”6' Furthermore, for each of these we add a vari(ant)wit? an) mean
- H : L w(rx—e)+m(xr+te
1The only estimate that we found with an explicitly given ‘stamt’ value at the jumps. For mstanoa)(x) - €|an0 2 )
has A = & and a = 118In%°z (well, thats not constant, Actually, this is related to rewriting expressions as Riema
but almost...), (20020) attributes this to Y. ChengExplicit esti- gtjelties integrals, which are then further transformedr &x-

mates on prime numbers (pre-print) [Though there are several preprints |
on arXiV (http://arxiv.org/abs/0810. 2113v1, http://arxiv. ample,
or g/ abs/ 0810. 2102v3, http://arxiv. org/ abs/0810. 2103v5),

xT
we couldn't find that paper. . . ] 19 P _ d
2Side remark: to indicate how a real number was rounded wenagepecial ( ' ) Z f(p) 1 f(y) w(y)
symbol. Examplesr = 3.14.1 = 3.1427 = 3.1416T = 3.14159.. The height psx

of the platform shows the size of the left-out part and thealion of the antenna . s . .
indicates whether actual value is larger or smaller thaplaled. We write, say, 10 give a further indication of their relation let me tell you

e = 2.72T = 2.711 as if the shorthand were exact. about the work of { ) ) and
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( ). Actually, Theorem 1.2(iv) follows from Due to the functional equatiofi can be extended to the entire
’$ following statement about the Chebyshev functia@momplex plane with the only, single pole at= 1. The zeroes

9*: forx > 73.2 of the sine function at negative integers (the non-negatvees
1 are cancelled with poles df, the zero ats = 0 with the pole
|9 () — 2| < —VzIn®z. of ¢), or in the¢ form the single poles of thE function at non-
8 positive integers, imply that hastrival zeros at even negative
Following roughly: { ) we derive Theorem 1.2(iv) integers—2Ns. In other words¢ has no pole and only zeroes
as follows. Noting e (y) = dlﬁ(yy) we can reformulate(z) and With Re(s) € [0, 1]. Moreover£(; + it) is real fort € R.
then integrate by parts: One of the two first proofsof the prime number theorem The-
orem 1.2 is based on the fact thahas no zeroes on the line
() = /I dd(t) wherefts = 1, which ( ) proved by an ingenious
59— Int trick. He observed that far > 1 andt € R we have
Iz o9t
= Irg z) + /2_ “rggt dt . [¢(x)*¢(z + it) ¢ (= + 2it)|
. : o (2.8) 2
Performing the same for (i) = [, & and subtracting it gives = exp Z %(1 +cogtinn))? | >1
n>2
. Ha) —x TYt)—t
m(@) - Li(@) = nz /, tin*¢ - has absolute value at leastfor all z > 1. (Note that2(1 +

i ) cogtInn))? = 3 4+ 4cogtInn) + cog2tInn), explaining the
By the bound for)* we can bound the first summand with thg|eyer choice of the exponends4, 1.) If now ¢(1 + it) were
desiredg/z Inz. Itis obvious that the integral term is negligizerg then the mentioned product would also have a zero there
ble and a better analysis shows that it does not even influBBeg e triple pole would meet an at least four-fold zero). Biking

constant. the limitz — 1 then leads to a contradiction.
_ ) This simple fact implies the prime number theorem with an
2. Riemann’s{-function error bound of order
No version of Theorem 1.2 was provable befgie ( ) O(z exp(—cVIn 7))

found the fundamental connection between primes and the now

so-called Riemang-function: on the errorr () — Li(x). Since then the prime number theorem

1 has been improved repeatedly by establishing larger zeroré-
(2.1) ¢(s)= Z = for Rs > 1 gions within the critical strig0, 1] + iR.
n>1
(2.2) =11 L for Rs > 1 3. Relations
p 1= pfs
1 (—1)m 1 ( ) found an explicit formula fotr using the zeroes
2. = f ) of the (-function:
(2.3) 1721757; e orRs > 0 ¢
. 3.1)
I(1—s) [ exp(sin(=z)) (
2.4 = f 1
(2.4) omi /P oxs) 1 ¢ Tors#L

. _ _ o0 ot
whereP denotes a path ‘once around the positive real axis’, that ™ (%) = Li (%) — Z Li(z®) + / TCE In2,
0 x

is, it starts atoo + 6 travels to0 + ¢ then circles around

and finally travels frond — ig back toco — 46 for some smalb e the sum runs over all zeroescofith real part between
(which excludes any poles which are not on the axis). Net, th, . -4 5né. A more elegant variant of (3.1) is by

¢ function fulfills the functional equation (1895 ' ' 7

(2.5) ¢(s) = 2°7°"tsin Uk (1 —s)¢(1—s). . e 1 1
<2) (3.2) 190($):x—%:%—iln(l—P)—M(Qﬂ).

( ) introduced the function —_— _JWo
=3, m:;n — <0
(2.6) £(s) = (s — 1)n— 3T (f + 1) ¢ (s) o .
2 3The other is by (1L899.
_ ls(s . l)wfgf (f) C(s), 4Actually, this is only correct if Liz?) is considered an imprecise kshortcut
2 for Ei(eInz) where E{z) = v +In(2) + Eio(2), Eio(2) = 351 55 =

. . . exp(t)—1 _ 1l expluz)—1 . L i
which is defined for alk € C and has no poles. Now, the funcdo — ¢ — dt=Jy =" — du, is the exponential integral. The problem
tional equation can be expressed as is how the analytic continuation is done. For= z¢ on the way fromz%() tjl
¢ we would runi S (o) times around zero, a branch point of the logarithmic
. integral Li. However, in the form EpInz) we just run in a strait line from
(2'7) 5(5) - 5(1 B S)' Ro - Inz to ¢ In z without circling around a branch point.
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4 Michael Nusken

To obtain a more explicit expression for the prime countungct  Here we obtain
tion = itself, we can use its relation to* and obtain:

1 1 7T
— + —arctan—,
Inz = Inzx

(3.9 o(u) = L /QHOO D(s)u™® ds
(3.3) mo(z) = R(x) — Y R(x®) — 211 Ja—ioo

provideda is not too small, that isg > 1 in our casg
. 83.3) Thus the Mellin transform ‘selects’ all terms with

where . ) 5 .
u < x. Applying the inverse transform t&- times (3.6) yields:

(34) R($):ZML|($%):1+ZM 1 a+ioco s

et n =1 k?'kC(k-i—l) — ‘T_lng(s) ds

27 Jy—ioo S
The second description & converges fastk ( ) gives P 11 ot ] /phy\~°
a proof of (3.3) on the basis of (3.1). The problematic paitiés = Z Z i / - (— ds
. L k2wt J,_ioo S \ T
conditional convergence of the sum over the non-triviabge&r Pk amee
Proofs of Riemann’s formula (3.1) can be found in many text- P 1 N

books on analytic number theory. However, most modern pre- X Z ; kH(l —/pt) = kz k'’
sentations prove the more elegant version (3.2)of 4 prse
A classical textbook covering bothlis ( ). One quite Read backwards we have Riemann’s formula
precise account can be foundhninik ( ), who also derives | pakioo s
(3.1) from (3.2). The only available proof for (3.3) seemb® (3.10) () = — Y n ¢(s) ds.
by ( ), which is completely based on known formu- 2mi Jo—ico S

las from several sources. These proofs often use quitesgregiis now obvious to a complex analyst that the zeroeg ofust
bounds, which were stated b (1859 and proved by play 4 decisive role as these are the values where the intégra
( ), on the numberV (T') of zeroes of th&- 145 poles.
function within a bounded regid, 1] + ¢[0, T proposes another variafit 483.2)
T T T Instead of the Euler product formula itself, he starts wigHag-

(3.5) N(T)=g-Ino— ——+0(nT). arithmic derivative, that is, compute the derivative oB{3.

Let us at least give an idea of the connection between zefgs 1) ) S A(n)n = / 2 49" (x).
of ¢ and the number of primes. We start with the Euler product ¢(s) =7 0
representation of and rewrite this in the form

By suitable inverse transformation this leads to

@ ncs) =3 o L g

e ) s

The integral can be reevaluated based on the zeros of its inte
grand which ends up in (3.2).

P k>1 (3.12) ¥ () =

271
This is a connection between all @f and all primes. We
still need to ‘select’ the primes below some bound This is
achieved using the Mellin transform of the Heaviside fumrcti
¢(u) = H(1 — u) flipped about;. The Mellin transform maps a
function f defined at least oR - with f(z) = % to
a functionM f by (M f)(s) = [~ f(u)us%. Like the Fourier Many definitions for displaying the fluctuations are around.

4. Fluctuations

transform, which is a cI(is_e relatijethe Mellin transform has @ ) propose
. . _ 1 ratioo —s
an mverse_.f(s) = 5 L7 (Mf)(s)u™* ds. For the named (@) - Li(z)
step functionp given by (4.1) 0(z) = ——or
2z Ininx
1 ifu<l, V. e
(3.7) o(u) = % ifu=1, obviously based on Theorem 1.2(v). We have analyzed
0 ifu>1, m(x) — Li(z
(4-2) ASchoenfelc{$) = (1)7|()
we obtain its Mellin transfrom sevzine
_ based on Theorem 1.2(iv) and verified thAkchoenteidz)| < 1
(3.8) ®(s) = (A;l(p)(s) for z < 240, ( ) considers
1
= wldu= =, “(R(z) — L 1+ 1arctan=
/0 5 4.3) Ar) = mo(x) ( (x) \}n; + - arc anm)
50ne needs to spend some extra care on the details ifot real, but it comes iz
out as presented here. 7

6The Mellin transform off is a rotated variant of the Fourier transform of the
function f o exp: (M f)(is) = v2r(F(f o exp))(s). This can be seen using — — — — .
a change of variables = e*: (Mf)(is) = [°°_ f(et)e®! dt. However, ¢(s) s—1 zg: o(s — o) ,; —2k(s+2k)  ¢(0)
usually that connection is not used. -

¢'(s) s s s ¢'(0)
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Prime flux 5

based on (3.3) and, probably, the observation that the dec@nby removing the In; factor from the denomiator, call th@*.
largest term in the definition i% Li(x) is asymptotically equal Actually, one can check that, assumingRe %
to % Notice that we only havé\(z) € O (In*z) under the . 5
Riemann hypothesis by Theorem 1.2(iv). Even in the model py_5) Q* <u _ + UT> () € O < 1 )
0 0

(1935 ) we only expectA(z)| < \/52Z—. Nev- gelne
ertheless, plots far up t027® seem to indicate that\(z)| < 1, whereas the difference of Li andtranslated here amounts to
which is definitely wrong in the long run. something like
Despite the contemporal believe thatz) < Li(x),
( ) observed thatr(z) — Li(z) changes sign in- (4.6) Q" (u— Vu) () =1

i VT
finitely often and even exceeds.. (m Ininin x) Thus the influence of the difference should be visibl€®in and
( ) proved that the first sign change occurs befotgus also the difference ofand Liin Q:

exp(expexp(79))) < 1010 (under Riemann), a bound which

has been improved th39822 - 10316 by ( ). CONJECTURE4.7. The average quality)(r — r)| is asymptot-
Based on extensive calculations using up2te 10'° critical ically smaller thanQ(r — Li)|. In this sense, Riemann’s formula
Zeroes, ( ) suggests that the first crossover poirtrovides a better approximation than the logarithmic irdégi .

is near the slightly smaller value.397162914 - 10316, . . . .
( } claims based on computer calculations that the firsf Orthogonal to this approach, one might consider the sign dis

crossover point is beyorid)!4. tribution of 7 — Li. As me.n_tlpned abqve, : _
. ( ) prove that the positivity domain of — Li has logarith-
Moreover, ( ) showed that the density afvalues ' . ) 7 . S
. A I . mic density of abou®.6 - 10~ 7. It seems definite that it is much
with m(z) > Li(z) is positive, and X ) smallerthar% The sign density forr however, seems to be
proved that this proportion is at least - 10~7. ’ 9 y " '

_ . 1 NG uninvestigated. It thus seems natural to state the
By definition R(x) is about; Li(y/z) ~ = larger than L{x)

and orl within A(z). ThusA(z) must become larger than o\ ;ecture4.8. The logarithmic density of the positivity do-
infinitely often. main ofr(x) —Li(x) is less than0~5. However, the logarithmic
density of the positivity domain equa% for each of the three

4.1. Aremark on beauty and truth. ( ) discusses functions

whether L{z) or r(z) := R(z) — 5 + < arctan.™ is a bet-

ter approximation forr(z). The problem is that Li and are o 7(z) — r(z),

much closer together than the maximal fluctuations.of way

out could be to consider the ‘average’ erfgr(m(u) —r(u)) du o 7*(x) — (Li (z) + [.° t(t%"f)m —1In 2),
versus/,” (m(u)—Li(u)) du. By the results of

| guess that again both terms oscillate much more than therdif o ¥*(z) — (z — 3In (1 — %) — In(27)).
ence and so probably no statement can be made. A variantw?\wil
use relative errors instead of absolute errors (so divide ap-
proximately by;=). Unfortunately, then the difference betwee
r and Li tends to zero. So the absolute error sees too much and
the relative error too few. Rescaling Wiﬁ@, which is the order

of the difference Liz) — r(z) ~ LLi (z2). So consider\(z)
in favour ofr and=(z) := Mj;'(z) in favour of Li. Asymp-

rqd that this conjecture is based solely on beauty and a some
Hny evidence.

totically, E(x) ~ A(x) + 1. This difference is not much in the
light of ( ) implying both exceeding InInlm in
both directions infinitely often. But the average value cégé
guantities might be more informative. So consider

I m(w—f(u) du

2 Vu u
(4.) Qr =)o) = — g
2 u

as a measure of quality. Notice that we use a logarithmic mean
here as we expect the fluctuations to oscillate only logamiith
cally, that is, likex — sin(uInz). My guess is that is not only
the more beautiful approximation far, but this will quantify
how r approximates better than Li.

As the formula work is much easierin 's variant,
consider (3.2) and le(x) := = — 5 In (1 — %) — In(27). Now,
we try to get hold ofyy- _; by considering the summands in the
remaining sum of the explicit formula (3.2). We have to adapt
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6 Michael Nisken

Part Il The GauB sum(x) = 3,.cy_, €Xp(252) x(n) has absolute
: value k. This functional equation proves thA(s, y) has no
P rog ressed eStl mates zeroes (nor poles) outside the stjip1] x iR.

5. Counting primes in arithmetic progressions = GENERALIZED RIEMANN HYPOTHESIS. For any Dirichlet

) ) character all zeroes of.(s, x) in the strip[0, 1] + iR have real
Let ¢ be any number and coprime tog. Consider the numberpa,t;
5

Ta+qz(z) = 7(x, ¢, a) of primes less than or equal tothat are
congruent taz modulog, or The special casg = x¢ is the Riemann hypothesis.

P * ok Weil's explicit formulage 2%

(5.1) Tarqz(z) = »_ 1.

p<z
pEa+qZ

Correspondingly, we define;, ;(z), Jgtaz(®), U, .7().
Here, we are collecting estimates to these quantities.

THEOREMS5.2 ( )4 We have
a0 = o) - (2) 22

whered; (z) = »_ x(n)A(n) andxo is the principal character.

n<x

Recall that a Dirichlet charactey is a functiony: N — C
which is multiplicative, periodic, and hagn) # 0 iff n is co-
prime to the period. Every Dirichlet character of perioidduces
a character of; and vice versa. This is why the period is usu-
ally called modulus. The smallest period of a characterlieda
its conductor. A character is primitive for a modulksf the
character has no smaller periiod. The unique characterraige
1 is the principal charactey, and is given byyxo(n) = 1 for
alln.V

* ¢k “Note that the characters of modulk$orm a group and
linearly span all-periodic functiondN — C.” is wrong! Find
the correct statemenkt?% We thus consider the Dirichlef-
functions given by

(5.3) Lis,x) =) @ =10 xwp=)"

n>1 p

for®s > 1. Clearly,L(s, xo) = ¢(s). By the definition it is clear
that L(s, x) is analytic forRs > 1, and by the Euler product
description it is evident thak(s, x) has no zeroes fdRs > 1.
Consider a primitive characterof modulusk and define: €
{0,1} by x(—=1) = (—1). Analoguously tc for ¢, consider

(5.4) A(s, x) = (%)45%1)/21" <S;La> L(s, x)-

Note thaté(s) = S(SQ—_I)A(S, Xo). Corresponding to the func-
tional equation of th&-function one finds the functional equa-
tion

/[;a

001y ).

(5.5) Al—s,%) = o
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Part Il Well, let's head for some answers.
.- In the cofinite case, ie. ifP \ A is finite, (a(s) =
Varla'[IOI’IS ¢(s) HpeP\A(l — p~®) (for Res > 1 and thus everywhere) and

s0( 4 is analytic everywhere but at its single pele- 1. Its zeros
6. Zeta functions for P-smooth numbers (?) are thus exactly those gfand additional ones on t_he imaginary
axis:1 —p~° =0iff s € ,ﬁ—;iZ C iR. This reasoning does not
(2017 considers partial zeta functions. We rephrase hiwrk for non-cofinite setst,
questions in our language. Ldtbe any subset @&. A numbem In the finite case, ie. if4 N P is finite, (4 is merely a finite
is called.A-grained if all its prime factors are id. Of course, we product of factor§l — p—*)~!. These factors have no zeros and
can always choosd C P, but we like the additional freedom.single poles aﬁ—”piZ.

Now define the zeta function of. In the cofinite case the summatory Lambda function should be
1 Inx
Cals) == —. 0% (z) = Inp =9*(z) — Inp | —
(5) A;amedns @)= 3 mp=v@ = 3 e | g
n p <z peEP\A
peEANP
This converges absolutely for Rg > 1 since) ., n~° does _ o
fors > 1. asks whether there is an Euler product formutdhose second part is more or leggP \ .A) Inz. The original
von Mangoldt formula (3.2) turns into
— s\ 1
Cals) = H I=p)" . Inz x@
pEANP 19.,4(1.) =T — eg\AInp W — ?
This answer is easy: Yes, we have this fo(Re> 1. Moreover, 1 ? 1
depending on the set it may well be that both expressions con- — ZIn (1 - _2> —In(27).
verge also for other values of requiresA N P to be 2 x M
infinite, but if we drop that both expressions are defined\adro . =<
C. n>1" —2n
A consideration of a direkt proof of (3.2) in this context sl
QUESTIONG6.1. Is there a functional equation g, ? yield more general formulas.

motivates this as follows: Consider the number of
primesm 4(x) in A less than or equal te. Now, he claims that
by picking.A suitably one can achieve (under RH) that

LVZ forg < C
. I_| < 8t iInx ’
|ma(z) — Li(z)| < {xo.sws otherwise

but there are arbitrarily large valuggbeyondC', of course) such
that
|Ta(z) — Li(z)| > 25

To that end he describes a sétvhich is all primes minus a very
sparse set of primes. Namely, he pigksas Graham’s humber
(whichis just some very, very large integer for our purpo&ey=
nextpriméC'), ¢, := nextprimg2°-1) and considersi = P\
{Ci |Z S N}

My feeling is that Li is just the wrong function here and shbul
be replaced by a suitable variantLor Riemann’s versiot 4.

asks further questions, in particular, with the example

A =P\ {2}:

QUESTIONG6.2.

(i) o DoesC 4 have an analytic continuation?

o Can one perform Euler-Maclaurin summation on
Ca(3 +it)?, analytic, convergent?

o Where are the zeros?

(i) Is there a von Mangoldt type formula for the summatory
Lambda function?
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8 Michael Nisken

Part IV 7.1.3. Cache-optimized segmented version.To further in-
. crease the use of available resources we put the primedpaire
AIgOrlth ms with the segment offsét[p] in buckets attached to each segment.
The bucket size is taylored to the size of the processor cache
7. Prime counting algorithms Fo_r every prime in a bucket assgciated to the current block we
strike outa[k[p] + tp] := 0 for ¢ until k[p] + tp leaves the current
Relevant literature: block. From the first overshooting vali€p] 4+ ¢p we subtract
the segment siz8 until it is less thanl, and put the prime with
°© { ). this offset in a bucket associated to the corresponding eagm
o ( ) ). Actually, small primes might be treated differently as theych

every segment whereas larger primes jump over many segments
This algorithm still needs

7.1. The sieve of Eratosthenes. timee O (LInlnz +/z), spacec O (S+Vx),

7.1.1. Basic sieve. Let’s describe the version to sieve an intethe gain lies in the optimized use of the processor’s cache.
val [z, — L[ := Z<y \ Z<y—r. We start with an array of bits s ¢k Pritchard’s wheel sieve with times O (%= L+7),
indexed by the numbers in the interval. At first we set all tiits spacec O (7). % 7%

1. Now, for each prime less or equal tq/z for & = 2p while

k < x in steps ofp set the bitk to 0. 7.2. The quadratic sieve. Relevant literature:
ALGORITHM 7.1. Sieve of Eratosthenes for an interval. ° ( )
Input: Interval bound:, interval lengthL. © ( )-
Output: Arraya[0..L] of bits such that[i] = 1iff z — L +iis  The quadratic sieve makes use of the fact that primes of the
prime. form 1 + 4k are a sum of two squares in an odd number of ways,
1. Initialize an array: of bits indexed frond..L to all 1. whereas squarefree composite numbers are a sum of two square
2. For p prime,p < /z do 34 in an even number of ways. More general we have the following
3. Fork=((L—z)remp),k <z, k+=pdo theoremiin (2004 after (2004:
4 alk] := 0. . : x
5 Return THEOREM7.2. Considern € N with nmodl2 € Zj, =
1,5,7,11. Choose the case with > nmod12:
The cllassical sieve of Eratosthenes would héve_ x—2 gnd () C = {1,5}, R = {(uy,us) €R|us >uy >0}
the primes for the loop are read of the arrayThis algorithm Q(uy, ug) = u? 4 ul.
needs )
(II) C = {7}, R = {(ul,ug) c R|u1,u2 > 0}, Q(ul,ug) =
timeec O (LIninz 4+ v/z), spacec O(L). 3uf + ul.
To speed up the algorithm we can decrease the memory(#- ¢ = {11}, R = {(u1,uz) € R|uy > uy > 0},

quirements by a factor two by only storing odd numbers in the Q(u1, uz) = 3uf — u3.

array. This amounts to predicting the effect of the smallgsf,oose the case withn € C and let P(n) =
prime. Extending this we only consider numbersis Z with {(ur,u2) € Z2 N R|Q(ur,us) = n}. Then

5 = Hfsgyp, a € ZX. This saves afactoﬂigy(l — ). In

practice, this is used with = 2 toy = 13. Y ¢k Is that less than n prime <= n squarefree\ #P(n) odd O

This result can be turned into an algorithm to sieve an iaerv
7.1.2. Segmented version. The first problem with the basic

sieve is its memory usage. The segmented sieve resorts by SUGoRITHM 7.3.

ting the target interval into smaller segments of lengthsay |nput: Interval bound:, interval lengthZ.

S|L. The most costly remaining operation is the division for th8utput: Arraya[0..L] of bits such that[i] = 1iff z — L + i is
inititial £ in the inner loop. This would now have to be executed prime.

L/ B times for every prime. To save this cost we introduce ata- o

ble k[p] carrying this information from block to block. Initialize 1. Initialize an array: of bits indexed fronv.. to all 0.

k[p] = (L — z) remp, this will be the only divisions. For eagh 2+ For (€, R, Q) do 3-5

strike outa[k[p] + tp] for ¢ = 0 until k[p] + tp exits the current 3 For (u1, uz) € RN 7*NQ [z — L,a]) do4-5

block. This first overshooting value minus the block length 4- ni=Q(ui,uz),i:=1i— (- L)
store ink[p]. Once a block has been fully processed output it ang: lfnmod12 € C'then a; := 1 — a;
reuse the array for the next block. This algorithm needs 6. Forq =3..|xz] do7-8
7. Form = [“f;ﬂ -2 do
timee O (LInlnz + /), spaces O (S+x). 8 g = 0.
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Prime flux 9

9. Return a 7.3.1. Countr? , (z). We assume thayz < A < \/z. Now
we can express
Some care is necessary to implement thkop to avoid un-

necessary multiplications (or even square roots). Thigrikgm 7T>A Z Z X (pg < z)
needs A<p<z p<q<z
P
timee O (LIninz + \/z), spacec O(L). - Z Z

A<p<\z p<q<lz/p

Segmentation can be employed here. The cache optimgabstituting the inner sum with(z/p) — ((p) — 1) and noting

tion is not clear to me... ( ) proposes a dissectionthat the second part merely¥s (r—1), we finally
) X . m(A)<r<n(Vx)

method. He dissects thearea and ... obtain the expression

* ok HEREX 7%

w(A w(v/x P
- _ 70 w2at0)=("5)) - (") + X7 atim

7.3. The combinatorial method. Relevant literature: A<pen/E

o ( ). To evaluate this, we could using the sieve of Eratosthentsrob

o ( ). o 7(A) with O™~ (A) operations,

° (1996. o m(y/x) with O~ (,/x) operations, and

We now refrain from listing primes. The combinatorial metho o eachn(z/p) by sieving up tar/A, cumulating it accounts
is the first that determines the numbe(z) of primes up tox for a total of agairO(x/A) operations.
without listing all those primes.

_, ) This is already more than anything before but we are limited t
For any (positive) reat we consider the count

at leastO(x/A) operations. Well, so we reuse (7.5) fonoting

FeK:3q,....q€SNP: } that the sum collapses singér < A < p < /z, and so4? >

K _ 2 .
Ws(w)—#{nENgz n=gq g €T3 >J;/p_

X x
of natural numbers that for somee K have exactlyk prime ™ (I_?) =7, (5> +m(4) - 1.
factors from the sef. If S contains all (relevant) primes, we may

omit it. Further, we abbreviatel; (z) = " () andz5"(z) = So providedd > /z an efficient computation ofY , (x) and

7r§<’“(x). In particular,m(x) = m(z). Finally, we denote the of 7 , (x/p) will give us an efficient computation far(z) in

a-th (natural) prime number by,, for instancep; = 2, p> = 3, the end as far as we can see by now.
p3 = 5. As a special case, we st := 1.

N . : :
Elsewhere used notation translates as followsz, a) 7.3.2. Countr 4 (). We start with two observations. First,
N

<N ; _
Y, () counts thep,.1-rough numberspy (z, a) = 7T>pa( z) 7r>PA (x) count.s exactl.y.thoee numbers that ere coprimeéfo=
counts they, .1 -rough numbers with exactly prime factors. ~ [[,<.p. This condition is periodic, per interval we count
Qleerly, w’;_A (x) = 0 as soon as nextprimé + 1)* > u, 4 (Pa) = ¢(Pa) = H;lng(p — 1) numbers, and in cas@,
which is implied byA® > z, and consequently is small with respect t@ we can thus benefit from

7.4 Waw = 3 ). 0.1 7a@) = | | )+ (o= | 5| ).
Py Py
0<k<| % ]
To benefit from this we need to have the valu€s, (x) precom-
Observe thatr? , (x) = 1 forz > 1 andnl , (z) = n(x) — puted for a suitably small values for

m(A). Combining all that yields Second, every number belowz has a smallest prime factor
Pmin(n). Forwﬁpa (z) the numbenr is counted ifpmin(n) > pq.
(7.5) 7(x) =7, (x) +7(A) -1~ Z ™ 4 (2). If instead we count all numbers Withhin(n) > p,, Or equiva-
a<k<| s | lently pmin(n) > pa.—1, We have to subtract (that’s sieving) those

with pmin(n) = p,. But these latter are of the form = p,m
If we chooseA = ,/z then the sum is actually empty; thoughVith m < - andpmin(n) > pa—1. This explains
Inz/In A = 2 allows the summand? , (z), this term is actu-
ally zero as it counts numbers that are a product of two prim@ss) N (x) =Y (z) — 7Y (i) )

. 7T>pa - 7T>pa7 >Pa—
larger thanA. So in that case we ‘only’ have to cou;r@\/i (x) ' '\ Pa

andr(y/x). The latter can be done using the standard sieveDifectly or by (7.7),7Y, () = |z|. Together with (7.8) this
Eratosthenes in tim@~ (:r%) What about the former then? Ifleads to the inclusion-exclusion formula

we choosed smaller, say somewhere betwegir and/z still (7.9) Wlip (z) = Z p(n) FJ
the sum has only the summand , (z). Lehmer used! = /= ‘ n<z n
so he has to count? , (z) as well. Pmin(n)<pa

Entwurf 9 IATEX 2¢(pr i mef | ux): August 10, 2011] 742



10 Michael Nisken

Obviously,wﬁp (z) = 11if p, <z < pey1 Which allows us to

altogether the special leaves contrlbuteﬁ% ) the value

stop the recursion a step earlier and actually to avoid céarpu

tions with resul®. Altogether one can turn this into an algorithn(7.10)

using
NG
)

To reduce thig ( ) try to keep
the computation tree smaller. They skét= «/r with a care-
fully chosen valuex > 1, fix parameters: andz = xz/A =

o~ 'z3, and on computation off,, («') stop the use of the re-
cursion (7.8) if we reach either

timee O (%) , Spacec O (

1. anordinary leaveh = c andz’ > z, or
2. aspecial leaver’ < z.

As mentioned earlier, we can use (7.7) when the pefipd=
HP p is small enough. This will determine the choicecof

<
Orzi tﬁe other hand, we can hope countt@) ") directly if «
gets small, the chosen threshold:is

Before we get to the details let us describe how to ind
the computation tree. The node fo¥ , (') in the tree either
is defined as a leave or it has two ChlldS oneﬂﬁg,bf (x")

’
x

N
and the other for-72,, (m

of the form pu(n)7%,,

{pv+1,.-.,pa}- In an ordinary leave we thus hawé = 2/,
with n < z/z = A. In a special leave we have > A. See
Figure 7.1 for an example.

7.3.3. Ordinary leaves. The aim here is to deal with all ordi-
nary leaves simultaneously. Their indices are preciselgrgby
those natural numbers with < A, u(n) # 0, pmin(n) > pe. SO

g (@
—

+”>Pa 5 (@)

e

N
+7r>pa 1 (x)

N,

Tr>1’a 2 TJa 1)
~

N x
TT>pa_3 (pafwafz)

-
_.N
>pa—3

(722)

X
>Pa—3 \Pa—1

)/

~

N x
T >pa_3 (Papa72 )

7WN>-Pa—2 (L

/

>pa—1 (ﬁ)
~

N x
T >pa_2 (papa71 )

X

Figure 7.1: Computation tree when= a — 3 andz = T

Most leaves are ordinary, the boxed one is special.

IATEX 2¢(pr i mef | ux): August 10, 20111742

). Each node in the tree thus is
(£) with n being a product a subset of

T

(_

n

N
>Pe

So

= > )

n<A
pmin(n) >pe

).

A modification of the sieve of Eratosthenes gives usifar N 4
the value[y(n), pmin(n)]. For eachn € N, 4 with pmin(n) > pe
we now computer , (£) using (7.7). Notice that there are
at mostA ordinary Ieaves So this amounts to a total time of
O (AlnIn A), most of which is needed for the sieving. Actually,
cis conS|dered constant here, say 7, since the precomputa-
tion of 7Y, (a’) for 2’ € N.p,_ otherwise is too costly. Well,
maybe we can allow a largerif we employ (7.8) forwﬁb (a")
with b > 7, say.

7.3.4. Special leaves. Subdivide the special leaves!, (£)
once more:

o First casep;, , < A: Cheap.

o Second casepl%+1 > A. Heren = pyr1pg for some
7(y/y) < d < a. Subdivide into

ex . . .
— Trivial leaves: Each trivial leave contributés So we

merely need to count them. That amounts to counting
primes. Some can be clustered, some are sparse.

— Easy leaves: Can be computed by counting primes us-
ing (7.4) with summands = 0 andk = 1 only (or
equivalently (7.5) with empty sum).

— Hard leaves: For these you have to comptifg ()
the hard way.

7.4. The analytical method. Relevant literature:

(1989).

(e]

o

(2004.
Riemann’s identity

ra+100 .8
L in ¢(s) ds

S

(7.11)

*
T
0 27

Z 1

k< g k a—100
with ¢ > 1 arbitrary may also be used to compute) via (1.7).
The integral here has to be understood as a path integraj tden
line with s = a. However, it turns out that a good approxima-
tion of the integral on the right is difficult to obtain sinca the
line Rs = a, bothz® and In¢(s) oscillate, and the integral is not
absolutely convergent. ( ) say that the
convergence can be estimated but not in a sufficient wayeddst
they resort to changing the formulae:

)y

pF <z

1 a+1i00

:_/a'_

211

c(p*)

(7.12) 3

F(s)In¢(s) ds

100

wherec(u) andF'(s) are a Mellin transform pair, that is,

1 a+1i00 .
(7.13) c(u) = 5 /aiioo F(s)u™?® ds,
(7.14) F(s) = / c(w)u®! du.
0
10 Entwurf
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If we usec = ¢o with ¢o(u) = 1 foru < z andeo(u) = 0 7.5. Counting modulo2. Relevant literature:
for u > x we obtain (7.11). However, thefi(s) = - which

makes the intgral difficult to compute. Instead, we modify ° ( )-

in an intervallz — y, z[ in a way that make#’ decrease rapidly
as|¥s| — oo. This then allows a numerical evaluation of the
integral. Of course, we do not obtairjz) or 7*(x) then but the

difference tor*(x) only depends on the prime powers within the 8. Algorithm to evaluate Riemann's¢ function

interval]z — y, z[ on whichc differs fromcy: Relevant literature:
" c(p®) _ 1—c(p®) .
(7.15) ) = Y — = > — ° €1989
pF<z r—y<pkse

This can be computed via sieving, say, in abgsteps, which is

ok provided thay, is not too large. (1987 9. Algorithm to approximate the number ¥ (z, y)

use ac for which the contribution of the region witfs| > 7' of y-smooth integers below:

is negligible forT > % Computing the integral numerically

now requires? (T'z¢) evaluations of the integrand. This boil$See (1997). Based orl

down to evaluaté at these points providef is sufficiently easy (1986 they essentially only need to compute values and
to compute! £1989 describes how multi- derivatives o<, (s) := [, (1 —p~*)~" to obtain¥(z,y) up
evaluation of¢ at valuesa + it for u < tu + u” can be done (g 3 relative error of orde® (Iny + L ) This has been further
within O (u2) time andO (u”) space for any € [0, 3]. This improved in (2006

leads to an algorithm using
timec O (x%“) ., spaces O (z"9)

where we can choogec [0, 1].
( ) proceeds similarly but uses a different kernel
function. Let

1 In%
7.16 w; T, A erfc
(7.16) o( ) = ( \fA)
based on the complementary error function effc =
% [° exp(—r?) dr. The Mellin transform of this kernel func-
tion is

)\2 2 s
);-
Definer™(z;A) = > ke, To(ph; A) For A = 0 this is pre-

cisely 7 (z ) with its standard defmmon The inverse Mellin
transformation provides us with the integral description

(7.17) D(s;2,N) = exp(

(7.18) 7 (z; \) = L /GHOO D(s;2,A)In¢(s) ds

2mi oo

that turns out to be well to approximate. On the other hand the
difference tor* (z) can be computed directly,

(7.19)
7 () = (@) = 3 (p052,0) — s, )

pk

Other than with the kernel using hy ( )
this sum is not finite, however its major contribution cormenir
finitely many primepowers close ta ( 182.5)ar-

gues that this kernel is optimal.

To make everything work one needs to bound errors for the
approximation of the integral (7.18) and the approximaiticthe
sum (7.19). Choosing parameters such that the common srror i
comfortably smaller thaé, the computation can be run. Finally,
the computation of the sum can be combined with the final step:

m(z) = 7%(2) = Yysa 57 (m%)
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_l’_
1-o)

Part V If o is large this is close to
Diverse \1_S(Q( !
10. A monotonicity property = ’1 —s ((J Y

{ ) claim that in any zero-free, right
open half-plan€ is isotone on any horizontal line. They do not
claim that givert € R such that there is no zero gfon the half
line L =R, + it the functionR_ ; — R, s — [¢(s +it)|* is
isotone.

If that is true then also the Riemann hypothesis holds: Since
is analytic the functiom: R.1 x R — R, (s,1) = £[¢(s +
it)|? is continuous. Assume that RH is false. Then we have
0 = o+ it with {(0) = 0 ando > 1. Since|¢]? > 0 we
havea(s,t) = 0 and there is a small € |0, — [ such that
aloc —e,t) < 0. Now however there exists@ > 0 such that
a(o—¢,t+6) < Obutthereis ng zeroonthe lin&R, 1 +i(t+4)
since the zeros of are discrete. But this contradicts the above
statement.

=

Figure 10.1: Contour lines df] |s — o;| for the depicted four
points;

The idea of the above comes from the product formulg for

(10.1) £(s) = %H (1 - g)

Actually, ¢ is isotone on[1, 1] (Proof?). Now, any zere with

Re(o) > 1 causes the absolute val}.le 2= % to decrease

and no finite number of roots on the critical line can repais th
on a horizontal line close tp. Of course, this factor has to be
combined with its mirrored versions:

(-2 090 )03)

IATEX 2¢(pr i mef | ux): August 10, 20111742 12
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A. TODO o The principal characteyg.

o %5.1:6 “Note that the characters of modukiorm agroup ~ © T"e quadratic charactdr;) modulok.
and linearly span alk-periodic functionsN — C.” is o Supposex € Z; generatesZ,, and¢ € C* is ap(k)-th primitive

wrong! Find the correct statement! root of unity. Then any period- charactery is given byx(a’) = ¢*
for somes € Z,). In particular, the quadratic character is given by
o %5.2:6 Weil's explicit formula <a_) — (—1)f = elk) ;
=) = .
o %7.1:8 Is that less than y ?

o %7.2:8 Pritchard’s wheel sieve with time O (= L+7),
spacec O (7).

o %7.3:9 HERE.

Notes

'More generally: lfe(z, 1) = z, c(c(z,n),m) = c(z,nm), g(c(z,n)) =
0forn > z,andf(z) = 3_, <, g(c(z,n)) then

g(@) =D p(n)fc(z,n)).
n<x

For examplez(z,n) = z1/™ with any ¢ that vanishes for arguments less ti2an
fulfills the requirements. (Since eé(b}) < 2is equivalent tar < 2% which is
true forz > 1, the condition fory is also fulfilled.)

PrROOF  Start with the right hand side of the claim:

S ) fle@n) = 3 um) S glele(z, n),m))

n<xz n<xz m<x

=D > wn)glclz,nm))

n<z m<z

=> > un) glc(zk)

k<zx nm<z
nm==k

—_———
f1 k=1,
10 otherwise
= g(c(z,1)) = g(2).

We use thay(c(z, k)) = 0 where we restrict the sum ovérto k& < x. O

i Most sources define

Ei(z):/ e"%’(t)dt for z € C\ R

Some (including MuPAD 3) define

El(z)*/ exp( g ifzeC\Reo

e
/ Xp( uz) du for Rz >0

Unfortunately, these definitions dlffer in particular abgle values where we need
it. And since E{z) = — E;(—=) for z > 0 also the branch cut is on different
sides when translated. This leads t¢Bi= —F1(—z) F iw for z < 0.

We encounter the exponential integral in form of the loganic integral
Li(z) = [ %. We can express L) = Ei(Inz)—Ei(In2) = —E;(— Inz)+
E1(—In2), which is only save for: € R.

/\

il A guess ford:
pn) 1 u(n J:Q/"

o) = 3 e - 30 3 M0
o n>1

n>1
zﬁ( ) - Z“

n>1

n

VExamples:
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