Bonn-Aachen International Center for Information Technology

Cryptography and Game Theory

IPEC Winter 2012

Scribe(s): Emil Atanasov Lecture 1, Date: 12.03.2012

Raekow, Ziegler

1 Multi Party Computations

In this part of the lecture

1.1 Cryptography

Cryptography provides tools for secure communication between two parties using un-secure environment for message transfers.

We will learn how to design and analyze protocols that overcome the influence of adversaries. Cryptography protocols can ensure:

- confidentiality
- integrity
- authenticity
- non-repudiation

1.2 Cryptography primitives

crypto primitive	useful for	examples
encryption schemes	confidentiality	AES RSA
signature schemes	authenticity and non-repudiation	ElGamal signature GHR
MACs	authenticity and integrity	authenticity and integrity
hash functions	integrity	SHA-256

1.3 Security

How to prove that the protocol is secure?

- Heuristic approach
- Rigorous approach

1.4 Heuristic approach I

- 1. Build a protocol.
- 2. Try to break the protocol.
- 3. Fix the break.
- 4. Go to 2.

Problems:

- Never can be sure that the protocol is secure.
- Real adversaries dont tell you their breaks.

Example: GSM protocol. This was private protocol. Here you can read why it's not secure any more.

1.5 Heuristic approach II

- 1. Build a protocol.
- 2. Provide a list of attacks that provably cannot be launched on the protocol
- 3. Reason that the list is complete.

Problems:

• Often the list is not complete

1.6 Rigorous approach

- 1. Provide an exact problem definition.
 - meaning of security
 - adversarial power
 - capabilities of the network
- 2. Prove that the protocol is
 - perfectly secure, e.g. one-time pad
 - computationally secure, e.g. RSA

Note: ! Randomness is expensive.

1.7 Computational security

- 1. Concrete approach
 - A scheme is (t, ϵ) secure if every adv. running in time at most t succeeds in breaking the scheme with probability at most ϵ
- 2. Asymptotic approach
 - A scheme is secure if every PPT adv. succeeds in breaking the scheme with only negligible probability

Example: Scheme with 60 bit key. t computer cycles to break the system with probability $\frac{t}{2^{60}}$. 2 Ghz $(2*10^9$ cycles/sec) $\frac{2^{60}}{2*10^9} \approx 18$ years

1.8 Asymptotic approach

A scheme is secure if every PPT adversary succeeds in breaking the scheme with only negligible probability.

Definition 1 Efficient algorithm is algorithm, s.t

- is probabilistic
- polynomial time: \exists const a, c and the running time is $a * n^c$

Definition 2 Negligible function is such a function with small probability of success. (Smaller than any inverse polynomial) \forall constants c the adversary success probability is smaller that n^{-c} for large enough values of n.

Example: Adversary run in time n^3 minutes. He can break the scheme with probability $\frac{2^{40}}{2^n}$

- $n \le 40$, success $\frac{2^{40}}{2^{40}} = 1 \approx 44$ days
- $n \leq 50$, success $\frac{2^{40}}{2^{50}} = \frac{1}{2^{10}} \approx 3$ mothns
- n = 500, success $\frac{2^{40}}{2^{500}} = \frac{1}{2^{460}} \approx 2040$ years

1.9 Adversaries

- cipher text only passive adversary
- known plain text adv. knows (part of) the message, that is exchanged
- chosen plain text adv. can play with the encryption mechanism; minimum requirement of PKC
- chosen cipher text adv. can play with the decryption mechanism
- adaptive chosen cipher text adv. can play with the decryption mechanism and can adapt the queries

1.10 Multi Party Computations

MPC is subfield of the Cryptography. It is related to zero-knowledge proof systems. Formally introduced by A. C. Yao in 1982.

[image goes here]

We want to compute

- Parties or players are denoted $P_1, P_2, ..., P_n$
- Each party holds a secret input x_i and the players agree on some n-input function f.
- Multi output case:

$$(y_1, y_2, ..., y_n) = f(x_1, x_2, ..., x_n)$$

• Single output case:

$$y = f(x_1, x_2, ..., x_n)$$

• Single output case with randomness:

$$y = f(x_1, x_2, ..., x_n; r)$$

Example: Tao's Millionaires' Problem

• Two millionaires wish to compute who is richer without revealing their wealth.

$$f(x_1, x_2) = \begin{cases} 1 & \text{if } x_1 < x_2 \\ 0 & \text{if } x_1 \ge x_2 \end{cases}$$

 x_1 and x_2 are the amounts of money which millionaires hold

Example: Voting

- There are two candidates C_0 and C_1 .
- There are *n* voters
- To vote for C_0 submit $x_i = 0$
- To vote for C_1 submit $x_i = 1$
- Who is the winner?

$$f(x_1, ..., x_n) = \begin{cases} C_0 & \text{if } \sum_{i=0}^n < \frac{n}{2} \\ C_1 & \text{otherwise} \end{cases}$$

• How many votes do the candidates have?

$$f(x_1,...,x_n) = (\#C_0, \#C_1) = (n - \sum_{i=1}^n x_i, \sum_{i=1}^n x_i)$$

Example: Sealed Bid Action

- n bidders
- x_i is the bid of the *i*-th bidder
- Announce the winner and price to $f(x_1, x_2, ..., x_n; r) = (\max_{x_i} x_i, i)$
- Tell the bidders whether they won or lost the bidding $f(x_1, x_2, ..., x_n; r) = (..., l, l, w, l, ...)$

1.11 Challenges

- Keep private data private:
 - Millionaires do not want to tell how much money they have.
 - Voters do not want to tell their vote.
 - Auctioneers do not want to reveal their bid.
- Compute function correctly
 - Who guarantees the the common function is computed correctly

[image goes here]

1.12 Adversaries

- malicious vs. semi-honest adversary
 - semi-honest (passive): the adversary behaves as specified, but he tries to learn additional information
 - malicious(active): the adversary does not behave as specified
- static vs. adaptive
 - static: the adversary corrupts a number of parties, that is fixed from the beginning
 - adaptive: the adversary corrupts parties as he sees fit
- Complexity: Most of the time PPT
- Monolithic adversary: one adversary controls a subset of parties.

1.13 Network model

- authenticated channels
- all parties share an authenticated channel
- all parties are connected point to point
- synchronous / asynchronous
- message delivery guaranteed?
- are there other protocols executed in the environment? broadcasting: who guarantees that all parties receive the same?
- consensus broadcast: all honest parties receive the same, even if sender is malicious

Definition 3 (informal) A real protocol that is run by the parties (in a world where no TTP exists) is secure if an adversary cannot profit more in a real execution than in an execution that takes place in the ideal world.

Definition 4 For any adversary that launches a successful attack on the real protocol there exists an adversary that can carry out the same attack in the ideal world

1.14 Ideal world

- Given an ideal functionality F (judge) all parties can send their inputs to and receive outputs from F.
- send/receive privately
- F executes a certain number of commands.
- F is incorruptible, always correct, nothing leaks.

1.15 Secure addition

n=3 players

 $P_1:x$

 P_2, P_3 - they together can revert the secret

 $x_1 \in \{0, ..., p-1\}, x_1 \in Z_p$

 P_1 chooses $r_1, r_2 \in_R Z_p$

 $r_3 = x_1 - r_1 - r_2 \mod p$

Example for secret sharing of one player:

P_1	P_2	P_3
r_2	r_1	r_1
r_3	r_3	r_2

Let
$$P_1: x_1, P_2: x_2 P_3: x_3 \text{ and } x_1, x_2, x_3 \in \mathbb{Z}_p$$

$$S = x_1 + x_2 + x_3 \mod p$$

$$r_{1,3} = x_1 - r_{1,1} - r_{1,2} \mod p$$
, where $r_{1,1}, r_{1,2} \in_R Z_p$

$$r_{2,3} = x_2 - r_{2,1} - r_{2,2} \mod p$$
, where $r_{2,1}, r_{2,2} \in_R Z_p$

$$r_{3,3} = x_3 - r_{3,1} - r_{3,2} \mod p$$
, where $r_{3,1}, r_{3,2} \in_R Z_p$

Step 1: Exchange values following the protocol discussion above

P_1	P_2	P_3
$r_{1,2}$	$r_{1,1}$	$r_{1,1}$
$r_{1,3}$	$r_{1,3}$	$r_{1,2}$
$r_{2,2}$	$r_{2,1}$	$r_{2,1}$
$r_{2,3}$	$r_{2,3}$	$r_{2,2}$
$r_{3,2}$	$r_{3,1}$	$r_{3,1}$
$r_{3,3}$	$r_{3,3}$	$r_{3,2}$

Step 2:Everyone computes

$$S_1 = r_{1,1} + r_{2,1} + r_{3,1} \mod p$$

 $S_2 = r_{1,2} + r_{2,2} + r_{3,2} \mod p$

$$S_3 = r_{1,3} + r_{2,3} + r_{3,3} \mod p$$

$$x_1 + x_2 + x_3 = S_1 + S_2 + S_3 = S$$