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1 Equilibrium Computation

Of course we want to compute the NE of a given game G. Therefor we need first of all a new condition
for a NE. We will also discuss this condition in an example.

1.1 Minmax for zerosum games

In this part of the lecture we consider zerosum games for two players, i.e. games where the sum of
the utility function of all players is zero (for all possible strategies). For example the matching pennies
game

H T
H 1 −1
T −1 1

.

If the first player win 1$ the secend player loose one and vice versa.
For such a two player game we define two values

vi = min
s1−i

max
si

ui(si, s1−i)


value
when

moving
second


and

vi = max
si

min
s1−i

ui(si, s1−i)


value
when

moving
first

 .

The value vi is the maximal gain if the player i can react to the strategy of player 1− i. In contrast
to the value vi, which is the maximal gain if player i is moving second, then player 1 − i can react to
player i’s strategy. In the MP game is vi = 1 and vi = −1 if we consider only pure strategies.

Proposition 1.
vi ≤ vi = v1−i

Proof. For all si and s∗1−i hold

min
s1−i

ui(si, s1−i) ≤ ui(si, s
∗
1−i).
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So it holds also if we consider the maximum over all si on both sides

max
si

min
s1−i

ui(si, s1−i) ≤ max
si

ui(si, s
∗
1−i).

Finally we take the minimum over all i on both sides

min
s∗1−i

max
si

min
s1−i

ui(si, s1−i)︸ ︷︷ ︸
vi

≤ min
s∗1−i

max
si

ui(si, s
∗
1−i)︸ ︷︷ ︸

vi

.

For the first part we are done since there is no term s∗1−i on the left hand side (we can ignore the
minimum over s∗1−i).

The second part is a simple calculation

vi = min
s1−i

max
si

ui(si, s1−i)

= min
s1−i

max
si
−u1−i(si, s1−i)

= min
s1−i

(
−min

si
u1−i(si, s1−i)

)
= −max

s1−i

min
si

u1−i(si, s1−i) = −vi

ut

Computing vi and vi is an optimization problem that can be solved by linear programming. Later
we will see efficient algorithms that use this fact. We have the following theorem (without a proof in
this lecture).

Theorem 2 (Minmax, von Neumann 1928).

vi = vi

1.2 Bimatrix games

Bimatrix games are aka finite two player strategic games. Player 1 can choose a row in M = {1, . . . ,m}
and player 2 a column in N = {1, . . . , n}. The payoff of the players is given by two matrices
A,B ∈ RM×N , w.l.o.g. with non-negative entries. The (mixed) strategies are column vectors x ∈ RM

and y ∈ RN where |x| = |y| = 1 and x, y ≥ 0. With this notation player 1’s expected payoff is
u1(x, y) = xTAy.

In the following part we will always consider the example where the two following matrices are
given

A =

 3 3
2 5
0 6

 , B =

 3 2
2 6
3 1

 .

A best response to the mixed strategy y of player 2 is a mixed strategy x that maximizes player 1’s
payoff u1(x, y) = xTAy. E.g. let player 2 play the pure strategy y =

(
1
0

)
. If we take A of our example

we get Ay =

 3
2
0

. If we have the notation xT = (x1, x2, x3) player 1’s payoff is

u1(x, y) = xTAy = 3x1 + 2x2.
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That means a best response of player 1 to y is the strategy x = (1, 0, 0).

Similar a best response of player 2 is defined.
Of course we have the fact that a NE is a pair of strategies that are best responses to each other and

vice versa. In the next proposition we formulate a condition for best responses.

Proposition 3 (best response condition). x is a best response to y if and only if for all k ∈ supp(x),
we have

(Ay)k = u = max
i∈M

(Ay)i. (∗)

Proof. (Ay)i is the expected payoff to player 1 when playing the (pure) strategy i against y. Then

xTAy =
∑
i∈M

xi(Ay)i

=
∑
i∈M

xi

(
u−

(
u− (Ay)i

))
=

∑
i∈M

xi︸ ︷︷ ︸
=1

u−
∑
i∈M

xi
(
u− (Ay)i

)

= u−
∑
i∈M

xi︸︷︷︸
≥0

(
u− (Ay)i︸ ︷︷ ︸

≥0

)
We have xTAy ≤ u and xTAy ≤ 0 iff

xk > 0 ⇒ u = (Ay)k.

ut

In our example we have a NE in pure strategies (support size (1, 1)):

x =

 1
0
0

 , y =

(
1
0

)
.

Now we try to find NE in mixed strategies. At first we consider the support size (1, 2) and (2, 1):
any pure strategy has a unique pure strategy as best response, so there are no NE with the desired
support size and we need to mix at least two strategies each.

So let’s investigate the support size (2, 2): player 2 has only one possibility to choose 2 columns,
but player 1 has three possibilities to chose two rows. So we have three cases:

Player 1 mixes row 1 and 2 To make player 2 indifferent between the two columns we compute

3x1 + 2x2 = 2x1 + 6x2 and x1 + x2 = 1.

The second equality holds as x is a mixed strategy. The result is x1 = 4/5 and x2 = 1/5. So the
expected payoff to player 2 is xTB = (2.8, 2.8). To make player 1 indefferent between the two
rows we have the equalities

3y1 + 3y2 = 2y1 + 5y2 and y1 + y2 = 1.
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The result is y1 = 2/3 and y2 = 1/3. So the expected payoff to player 1 is Ay

 3
3
2

 and (∗)

holds. So have found a NE.

Player 1 mixes row 1 and 3 To make player 1 indifferent between the two rows, we have the equali-
ties

3y1 + 3y2 = 6y2 and y1 + y3 = 1.

We get the result y1 = 1/2 and y3 = 1/2. But the expected payoff is

 3
3.5
3

, (∗) does not

hold. Also to make player 2 indifferent between two columns leads to a contradiction.

3x1 + x3 = 2x1 + x3 and x1 + x3 = 1

has solution x1 = 2 and x3 = −1. In contradiction to 0 ≤ xi ≤ 1.

Last case is left as an exercise.
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