1 Lecture 11

1.1 Oblivious transfer

Problem:

- Alice sends b to Bob, but only with $Pr = \frac{1}{2}$.
- Bob receives b with $Pr = \frac{1}{2}$ with $Pr = \frac{1}{2}$ he receives \sharp junk.
- Alice does not learn what Bob received.

Rabins Obvious Transfer, 1/2 - OT [Rabin 1981]

1. A picks large p, q (exp.: $p == q == 3(mod4)$).
2. A sends N to B
3. B picks $x \in R Z_N$ computes $t = x^2 \mod N$ and sends $\bar{s} = \sqrt{t}$ to A
4. B calculates $N = p \cdot q = (x + y) \cdot (x - y) = x^2 - y^2$
5. A chooses $s \in R S$ where $S = [x, -x, y, -y]$ and sends s to B
6. If $s = \pm x$ then B learns nothing. If $s = \pm y$ then B can compute p, q.

One-out-of-two oblivious transfer (1-2-OT)

Goal:
Alice sends 2 bits to OT-box.
Bob picks i which bit he wants to receive.
OT outputs b_i to Bob and discards b_{1-i}.

Application:
Private Information retrieval.
Claim: 1-2-Ot and 1/2-OT can be transform in each other.
1-2-Ot \Rightarrow 1/2-OT
1. A sends b to B with $Pr = \frac{1}{2}$.
2. A chooses $r, l \in R 0, 1$
3. A inputs to 1-2-OT : If $l = 0 : (b_0, b_1) = (b, r)$. If $l = 1 : (b_0, b_1) = (r, b)$.
4. B selects \(i \in \{0, 1\} \) and sends \(i \) to OT. Note OT output \(b \) iff \(i = l \).

5. A sends \(l \) to B over standard channel.

6. B compares \(l = i \). B knows he learned \(b \), else B knows he learned \(\sharp \).

\[\frac{1}{2}-\text{OT} \Rightarrow 1-2-\text{OT} \] [Crepeau?]

1. A and B agree on security parameters \(n, m \) where \(n \approx 3m \).

2. A chooses \(n \) random bits \(r_1 \ldots r_n \).

3. A and B run \(\frac{1}{2} \)-OT for each \(r_i \). Result: B knows \(\approx \frac{1}{2} \) of \(r_i \), but A does not know which ones.

4. B picks \(U = (i_1, \ldots, i_m), V = (i_{m+1}, \ldots, i_{2m}) \) with \(U \cap V = \emptyset \). B knows \(r_i \forall i \in U \).

5. Bob sends : \((x, y) = (U, V)\) if he wants to learn \(b_0 \) or \((x, y) = (V, U)\) if he wants to learn \(b_1 \).

6. A computes :
\[
z_0 = \bigoplus x \in X r_x \quad \text{and} \quad z_1 = \bigoplus y \in Y r_y
\]
and sends \((w_1, w_2) = (b_0 \oplus z_0, b_1 \oplus z_1)\) to B.

7. B can use the bits from \(U \) to compute \(z_k = \bigoplus i \in U r_i \) and finds \(b_k = z_k \oplus w_k \)

q.e.d.

- There are protocols for \(k \) out of \(n \) OT.
- With OT we can construct secure MPC protocols that can realize (almost) any function.
- OT + digital cash can be used for completely anonymous e-payment systems.
 Digital cash: protects the identity of the buyer.
 OT: prevent the seller from learning what was purchased.

Millionaires Problem MPC-protocol using OT.

\(f(a, b) \) is a poly size boolean circuit, consisting of AND and XOR gates.

Construct a protocol, so that at any gate A (holding \(x \)'s) and B (holding \(y \)'s) will have a share of the output.

Each wire in a boolean circuit is represented by one bit \(b_i = x_i \oplus y_i \).

Input:

\(T^A \) (bits of Alice)
\(T^B \) (bits of Bob)

represent \(f(a, b) : x^A \oplus x^B \) : \(x^A \in T^A, x^B \in T^B \)

Sharing phase:

1. A generates a random string \(a^B \) and computes \(a^A = a \oplus a^B \).
2. A sends \(a^B \) to B.
3. B generates a random string \(b^A \) computes \(b^B = b \oplus b^A \).
4. B sends \(b^A \) to A.
Computation phase:

XOR-Gate
\[x \oplus y = (x^A \oplus x^B) \oplus (y^A \oplus y^B) = (x^A \oplus y^A) \oplus (x^B \oplus y^B) \]

1. A computes \(x^A \oplus y^A \).
2. B computes \(x^B \oplus y^B \).

And-Gate
\[x \cdot y = (x^A \oplus x^B) \cdot (y^A \oplus y^B) = (x^A \cdot y^A) \oplus (x^A \cdot y^B) \oplus (x^B \cdot y^A) \oplus (x^B \cdot y^B) = A \oplus ? \oplus ? \oplus B \]

Let M be a 1-2-OT box.

Case: \((x^A \cdot y^B)\)

1. A generates \(r^A \in_R 0, 1 \)
2. A’s input to M: \((b_0, b_1) = ((x^A \cdot 0) \oplus r^A, (x^A \cdot 1) \oplus r^A)\)
3. B inputs \(y^B \) to M.
4. M outputs \((x^A \cdot y^B) \oplus r^A \) to B. B stores this as \(w^B \).

Note that \(x^A = r^A \oplus w^B \). But B does not learn anything about \(x^A \). A does not learn \(y^B \).

The case \(x^B \cdot y^A \) is similar. Bob provides inputs to OT.

Finally A and B assemble shares:

1. A computes \((x \cdot y)^A = (x^A \cdot y^A) \oplus r^A \oplus w^A\)
2. B computes \((x \cdot y)^B = (x^B \cdot y^B) \oplus r^B \oplus w^B\)

Reconstruction phase:
A und B compine ther shares and learn the output of \(f(a, b) \).