1 Lecture 11

1.1 Oblivious transfer

Problem:

- Alice sends b to Bob, but only with $\operatorname{Pr}=\frac{1}{2}$.
- Bob receives b with $\operatorname{Pr}=\frac{1}{2}$ with $\operatorname{Pr}=\frac{1}{2}$ he receives \sharp junk.
- Alice does not learn what Bob received.

Rabins Obivious Transfer, 1/2-OT [Rabin 1981]

1. A picks large $p, q(\exp .: p==q==3(\bmod 4))$.
2. A sends N to B
3. B picks $x \in_{R} Z_{N}$ computes $t=x^{2} \bmod N$ and sends $\bar{s}=\sqrt{t}$ to A
4. B calculates $N=p \cdot q=(x+y) \cdot(x-y)=x^{2}-y^{2}$
5. A chooses $s \in_{R} S$ where $S=[x,-x, y,-y]$ and sends s to B
6. If $s= \pm x$ then B learns nothing. If $s= \pm y$ then B can compute p, q.

One-out-of-two oblivious transfer (1-2-OT)
Goal:
Alice sends 2 bits to OT-box.
Bob picks i which bit he wants to receive.
OT outputs b_{i} to Bob and discards b_{1-i}.
Application:
Private Information retrieval.
Claim: 1-2-Ot and 1/2-OT can be transform in each other.
$1-2-\mathrm{Ot} \Rightarrow 1 / 2-\mathrm{OT}$

1. A sends b to B with $\operatorname{Pr}=\frac{1}{2}$.
2. A chooses $r, l \in_{R} 0,1$
3. A inputs to 1-2-OT : If $l=0:\left(b_{0}, b_{1}\right)=(b, r)$. If $l=1:\left(b_{0}, b_{1}\right)=(r, b)$.
4. B selects $i \in 0,1$ and sends i to OT. Note OT output b iff $i=l$.
5. A sends l to B over standard channel.
6. B compares $l=?$ i. B knows he learned b, else B knows he learned \sharp

$1 / 2$-OT $\Rightarrow 1$-2-OT [Crepeau?]

1. A and B agree on security parameters n, m where $n \approx 3 m$.
2. A chooses n random bits $r_{1} \ldots r_{n}$.
3. A and B run $1 / 2$-OT for each r_{i}. Result: B knows $\approx \frac{1}{2}$ of r_{i}, but A does not know which ones.
4. B picks $U=\left(i_{1}, \ldots, i_{m}\right), V=\left(i_{m+1}, \ldots, i_{2} m\right)$ with $U \cap V=\emptyset$. B knows $r_{i} \forall i \in U$.
5. Bob sends : $(x, y)=(U, V)$ if he wants to learn b_{0} or $(x, y)=(V, U)$ if he wants to learn b_{1}.
6. A computes : $z_{0}=\oplus x \in X r_{x}$ and $z_{1}=\oplus y \in Y r_{y}$ and sends $\left(w_{1}, w_{2}\right)=\left(b_{0} \oplus z_{0}, b_{1} \oplus z_{1}\right)$ to B.
7. B can use the bits from U to compute $z_{k}=\oplus i \in U r_{i}$ and finds $b_{k}=z_{k} \oplus w_{k}$
q.e.d.

- There are protocols for k out of n OT.
- With OT we can construct secure MPC protocols that can realize (almost) any function.
- OT + digital cash can be used for completly anonymous e-payment systems.

Digital cash: protects the identity of the buyer.
OT: prevent the seller from learning what was purchased.
Millionaires Problem MPC-protocol using OT.
$f(a, b)$ is a poly size boolean circuit, consisting of AND and XOR gates.

Construct a protocol, so that at any gate A (holding x 's) and B (holding y 's) will have a share of the output.
Each wire in a boolean circuit is represented by one bit $b_{i}=x_{i} \oplus y_{i}$.
Input:
T^{A} (bits of Alice)
T^{B} (bits of Bob)
represent $f(a, b): x^{A} \oplus x^{B}: x^{A} \in T^{A}, x^{B} \in T^{B}$
Sharing phase:

1. A generates a random string a^{B} and computes $a^{A}=a \oplus a^{B}$.
2. A sends a^{B} to B .
3. \mathbf{B} generates a random string b^{A} computes $b^{B}=b \oplus b^{A}$.
4. B sends b^{A} to A .

Computation phase:
XOR-Gate
$x \oplus y=\left(x^{A} \oplus x^{B}\right) \oplus\left(y^{A} \oplus y^{B}\right)=\left(x^{A} \oplus y^{A}\right) \oplus\left(x^{B} \oplus y^{B}\right)$

1. A computes $x^{A} \oplus y^{A}$.
2. B computes $x^{B} \oplus y^{B}$.

And-Gate
$x \cdot y=\left(x^{A} \oplus x^{B}\right) \cdot\left(y^{A} \oplus y^{B}\right)=\left(x^{A} \cdot y^{A}\right) \oplus\left(x^{A} \cdot y^{B}\right) \oplus\left(x^{B} \cdot y^{A}\right) \oplus\left(x^{B} \cdot y^{B}\right)=A \oplus ? \oplus ? \oplus B$ Let M be a 1-2-OT box.
Case: $\left(x^{A} \cdot y^{B}\right)$

1. A generates $r^{A} \in_{R} 0,1$
2. A's input to M: $\left(b_{0}, b_{1}\right)=\left(\left(x^{A} .0\right) \oplus r^{A},\left(x^{A} .1\right) \oplus r_{A}\right)$
3. B inputs y^{B} to M .
4. M outputs $\left(x^{A} \cdot y^{B}\right) \oplus r^{A}$ to B. B stores this as w^{B}.

Note that $x^{A} .=r^{A} \oplus w^{B}$. But B does not learn anything about x^{A}. A does not learn y^{B}. The case $x^{B} \cdot y^{A}$ is similar. Bob provides inputs to OT.

Finally A and B assemble shares:

1. A computes $(x \cdot y)^{A}=\left(x^{A} \cdot y^{A}\right) \oplus r^{A} \oplus w^{A}$
2. B computes $(x \cdot y)^{B}=\left(x^{B} \cdot y^{B}\right) \oplus r^{B} \oplus w^{B}$

Reconstruction phase:
A und B compine ther shares and learn the output of $f(a, b)$.

