
Bonn-Aachen International Center for Information Technology
Cryptography and Game Theory Raekow, Ziegler
IPEC Winter 2012

Scribe(s): David Möller Lecture 11, Date: 20.03.2012

1 Lecture 11

1.1 Oblivious transfer

Problem:

• Alice sends b to Bob, but only with Pr = 1
2 .

• Bob receives b with Pr = 1
2 with Pr = 1

2 he receives ] junk.

• Alice does not learn what Bob received.

Rabins Obivious Transfer, 1/2 - OT [Rabin 1981]

1. A picks large p, q (exp.: p == q == 3(mod4)).

2. A sends N to B

3. B picks x ∈R ZN computes t = x2modN and sends s̄ =
√
t to A

4. B calculates N = p · q = (x + y) · (x− y) = x2 − y2

5. A chooses s ∈R S where S = [x,−x, y,−y] and sends s to B

6. If s = ±x then B learns nothing. If s = ±y then B can compute p, q.

One-out-of-two oblivious transfer (1-2-OT)
Goal:

Alice sends 2 bits to OT-box.
Bob picks i which bit he wants to receive.
OT outputs bi to Bob and discards b1−i.

Application:
Private Information retrieval.

Claim: 1-2-Ot and 1/2-OT can be transform in each other.
1-2-Ot⇒ 1/2-OT

1. A sends b to B with Pr = 1
2 .

2. A chooses r, l ∈R 0, 1

3. A inputs to 1-2-OT : If l = 0 : (b0, b1) = (b, r). If l = 1 : (b0, b1) = (r, b).

1



4. B selects i ∈ 0, 1 and sends i to OT. Note OT output b iff i = l.

5. A sends l to B over standard channel.

6. B compares l =? i. B knows he learned b, else B knows he learned ]

1/2-OT⇒ 1-2-OT [Crepeau?]

1. A and B agree on security parameters n, m where n ≈ 3m.

2. A chooses n random bits r1...rn.

3. A and B run 1/2-OT for each ri. Result: B knows ≈ 1
2 of ri, but A does not know which ones.

4. B picks U = (i1, ..., im), V = (im+1, ..., i2m) with U ∩ V = ∅. B knows ri∀i ∈ U .

5. Bob sends : (x, y) = (U, V ) if he wants to learn b0 or (x, y) = (V,U) if he wants to learn b1.

6. A computes : z0 = ⊕x ∈ Xrx and z1 = ⊕y ∈ Y ry and sends (w1, w2) = (b0 ⊕ z0, b1 ⊕ z1) to
B.

7. B can use the bits from U to compute zk = ⊕i ∈ Uri and finds bk = zk ⊕ wk

q.e.d.

• There are protocols for k out of n OT.

• With OT we can construct secure MPC protocols that can realize (almost) any function.

• OT + digital cash can be used for completly anonymous e-payment systems.
Digital cash: protects the identity of the buyer.
OT: prevent the seller from learning what was purchased.

Millionaires Problem MPC-protocol using OT.
f(a, b) is a poly size boolean circuit, consisting of AND and XOR gates.

Construct a protocol, so that at any gate A (holding x’s) and B (holding y’s) will have a share of
the output.
Each wire in a boolean circuit is represented by one bit bi = xi ⊕ yi.

Input:
TA (bits of Alice)
TB (bits of Bob)
represent f(a, b) : xA ⊕ xB : xA ∈ TA, xB ∈ TB

Sharing phase:

1. A generates a random string aB and computes aA = a⊕ aB .

2. A sends aB to B.

3. B generates a random string bA computes bB = b⊕ bA.

4. B sends bA to A.

2



Computation phase:
XOR-Gate

x⊕ y = (xA ⊕ xB)⊕ (yA ⊕ yB) = (xA ⊕ yA)⊕ (xB ⊕ yB)

1. A computes xA ⊕ yA.

2. B computes xB ⊕ yB .

And-Gate
x · y = (xA ⊕ xB) · (yA ⊕ yB) = (xA · yA)⊕ (xA · yB)⊕ (xB · yA)⊕ (xB · yB) = A⊕?⊕?⊕B
Let M be a 1-2-OT box.

Case: (xA · yB)

1. A generates rA ∈R 0, 1

2. A’s input to M: (b0, b1) = ((xA.0)⊕ rA, (xA.1)⊕ rA)

3. B inputs yB to M.

4. M outputs (xA · yB)⊕ rA to B. B stores this as wB .

Note that xA· = rA ⊕ wB . But B does not learn anything about xA. A does not learn yB .
The case xB · yA is similar. Bob provides inputs to OT.

Finally A and B assemble shares:

1. A computes (x · y)A = (xA · yA)⊕ rA ⊕ wA

2. B computes (x · y)B = (xB · yB)⊕ rB ⊕ wB

Reconstruction phase:
A und B compine ther shares and learn the output of f(a, b).

3


