Bonn-Aachen International Center for Information Technology Cryptography and Game Theory IPEC Winter 2012

Raekow, Ziegler

Scribe(s): David Möller

Lecture 11, Date: 20.03.2012

1 Lecture 11

1.1 Oblivious transfer

Problem:

- Alice sends b to Bob, but only with $Pr = \frac{1}{2}$.
- Bob receives b with $Pr = \frac{1}{2}$ with $Pr = \frac{1}{2}$ he receives \sharp junk.
- Alice does not learn what Bob received.

Rabins Obivious Transfer, 1/2 - OT [Rabin 1981]

- 1. A picks large p, q (exp.: $p == q == 3 \pmod{4}$).
- 2. A sends N to B
- 3. B picks $x \in_R Z_N$ computes $t = x^2 \mod N$ and sends $\overline{s} = \sqrt{t}$ to A
- 4. B calculates $N = p \cdot q = (x + y) \cdot (x y) = x^2 y^2$
- 5. A chooses $s \in_R S$ where S = [x, -x, y, -y] and sends s to B
- 6. If $s = \pm x$ then B learns nothing. If $s = \pm y$ then B can compute p, q.

One-out-of-two oblivious transfer (1-2-OT) Goal:

Alice sends 2 bits to OT-box.

Bob picks *i* which bit he wants to receive.

OT outputs b_i to Bob and discards b_{1-i} .

Application:

Private Information retrieval.

Claim: 1-2-Ot and 1/2-OT can be transform in each other. 1-2-Ot \Rightarrow 1/2-OT

- 1. A sends b to B with $Pr = \frac{1}{2}$.
- 2. A chooses $r, l \in_R 0, 1$
- 3. A inputs to 1-2-OT : If l = 0 : $(b_0, b_1) = (b, r)$. If l = 1 : $(b_0, b_1) = (r, b)$.

- 4. B selects $i \in 0, 1$ and sends i to OT. Note OT output b iff i = l.
- 5. A sends l to B over standard channel.
- 6. B compares l = i. B knows he learned b, else B knows he learned \sharp

 $1/2-\text{OT} \Rightarrow 1-2-\text{OT}$ [Crepeau?]

- 1. A and B agree on security parameters n, m where $n \approx 3m$.
- 2. A chooses n random bits $r_1...r_n$.
- 3. A and B run 1/2-OT for each r_i . Result: B knows $\approx \frac{1}{2}$ of r_i , but A does not know which ones.
- 4. B picks $U = (i_1, ..., i_m)$, $V = (i_{m+1}, ..., i_2m)$ with $U \cap V = \emptyset$. B knows $r_i \forall i \in U$.
- 5. Bob sends : (x, y) = (U, V) if he wants to learn b_0 or (x, y) = (V, U) if he wants to learn b_1 .
- 6. A computes : $z_0 = \oplus x \in Xr_x$ and $z_1 = \oplus y \in Yr_y$ and sends $(w_1, w_2) = (b_0 \oplus z_0, b_1 \oplus z_1)$ to B.
- 7. B can use the bits from U to compute $z_k = \oplus i \in Ur_i$ and finds $b_k = z_k \oplus w_k$

q.e.d.

- There are protocols for k out of n OT.
- With OT we can construct secure MPC protocols that can realize (almost) any function.
- OT + digital cash can be used for completly anonymous e-payment systems. Digital cash: protects the identity of the buyer. OT: prevent the seller from learning what was purchased.

Millionaires Problem MPC-protocol using OT.

f(a, b) is a poly size boolean circuit, consisting of AND and XOR gates.

Construct a protocol, so that at any gate A (holding x's) and B (holding y's) will have a share of the output.

Each wire in a boolean circuit is represented by one bit $b_i = x_i \oplus y_i$.

Input: T^A (bits of Alice) T^B (bits of Bob) represent $f(a,b): x^A \oplus x^B: x^A \in T^A, x^B \in T^B$ Sharing phase:

- 1. A generates a random string a^B and computes $a^A = a \oplus a^B$.
- 2. A sends a^B to B.
- 3. B generates a random string b^A computes $b^B = b \oplus b^A$.
- 4. B sends b^A to A.

Computation phase:

XOR-Gate

 $x\oplus y=(x^A\oplus x^B)\oplus (y^A\oplus y^B)=(x^A\oplus y^A)\oplus (x^B\oplus y^B)$

- 1. A computes $x^A \oplus y^A$.
- 2. B computes $x^B \oplus y^B$.

And-Gate $x \cdot y = (x^A \oplus x^B) \cdot (y^A \oplus y^B) = (x^A \cdot y^A) \oplus (x^A \cdot y^B) \oplus (x^B \cdot y^A) \oplus (x^B \cdot y^B) = A \oplus ? \oplus ? \oplus B$ Let M be a 1-2-OT box. Case: $(x^A \cdot y^B)$

- 1. A generates $r^A \in_R 0, 1$
- 2. A's input to M: $(b_0, b_1) = ((x^A.0) \oplus r^A, (x^A.1) \oplus r_A)$
- 3. B inputs y^B to M.
- 4. M outputs $(x^A \cdot y^B) \oplus r^A$ to B. B stores this as w^B .

Note that $x^A \cdot = r^A \oplus w^B$. But B does not learn anything about x^A . A does not learn y^B . The case $x^B \cdot y^A$ is similar. Bob provides inputs to OT.

Finally A and B assemble shares:

- 1. A computes $(x \cdot y)^A = (x^A \cdot y^A) \oplus r^A \oplus w^A$
- 2. B computes $(x \cdot y)^B = (x^B \cdot y^B) \oplus r^B \oplus w^B$

Reconstruction phase:

A und B compine ther shares and learn the output of f(a, b).