1 Game Theory Part

$\mathrm{A}=$

$$
\left(\begin{array}{ll}
3 & 3 \\
2 & 5 \\
0 & 6
\end{array}\right)
$$

$B=$

$$
\left(\begin{array}{ll}
3 & 2 \\
2 & 6 \\
3 & 1
\end{array}\right)
$$

Best respons criterion: x is a best response to y iff for all $k \in \operatorname{supp}(x) x^{T} A y=u=\max i \in M(A y)_{i}$
Consider support $(2,3)$ and $(4,5)$ To make player 1 indifferent between 2 and 3: $2 y_{4}+5 y_{5}=$ $0 y_{4}+y_{5} y_{4}+y_{5}=1 \Rightarrow\left(y_{4}, y_{5}\right)=\left(\frac{1}{3}, \frac{2}{3}\right)$. The expected payoff for player 1 is $(3,4,4)^{T}$, so $\left(^{*}\right)$ is satisfied.

To make player 2 indifferent between 4 and 5 we solve $2 x_{2}+3 x_{3}=6 x_{2}+x_{3} x_{2}+x_{3}=1$ $\Rightarrow\left(x_{2}, x_{3}\right)=\left(\frac{1}{3}, \frac{2}{3}\right)$ With expected payoff $\left(\frac{8}{3}, \frac{8}{3}\right)$ so $(*)$ is satisfied.

What about support size $(1,2,3)$ and $(4,5)$?
A mixed strategy of player 2 is already uniquely determined by equalizing expected payoffs for two pure strategies of player 1. Then the payoff for the third strategy is different.

Def.: A two-player game is non degenerated if no mixed strategy of support size k has more than k best pure responses.

Cor.: In any NE (x, y) of a non-degenerate bimatrix game, the support sizes of x and y are equal.
Algo: Equilibria by support enumeration
Input: a nondegenerate bimatrix game given by $A, B \in R^{M \times N}$
Output: list of all NE of the game

- $N E=[]$
- For each $k \in 1, \ldots$, minm, n :
- \quad For each pair (I, J) of k-sized subsets of M and N :
- \quad Solve
$\sum i \in I x_{i} b_{i j}=v$ for $j \in J, \sum x_{i}=1$
$\sum j \in J a_{i j} y_{j}=u$ for all $i \in I, \sum y_{i}=1$
- $\quad Y \vec{x} \geq \overrightarrow{0}, \vec{y} \geq \overrightarrow{0}$ and (*) holds for x and analogously y
- \quad NE.append ((x, y))
- return NE

1.1 Equilibria via labeled polytopes

Notation:

- affine combination of points $z_{i}: \sum \lambda_{i} z_{i}$, with scalars λ_{i}, s.t. $\sum \lambda_{i}=1$.
- convex combination of points $z_{i}: \sum \lambda_{i} z_{i}$, with scalars λ_{i}, s.t. $\sum \lambda_{i}=1$ and $\lambda_{i} \geq 0 \forall i$.
- a set of points is convex, if closed under convex combinations.
- d points are affinely independent, if none of them is an affine combination of the $d-1$ others
- a convex set has dimension d if it has $d+1$ affinely independent points, but no more.
- a polyhedron $P \leq R^{d}$ is defined by $P=z \in R^{d} \mid C z \leq q$, where C is a matrix and q is a vector.
- a polyhedron is called full-dimensional if $\operatorname{dim}(P)=d$
- a polyhedron is called a polytope if it is bounded.
- a face of P is defined by $F=z \in P \mid c^{T} z=q_{0}$ s.t. $c^{T} z \leq q_{0}$ for all z in P.
- a 0 -dim face is called a vertex
- a 1-dim face is called a edge
- a 2-dim face is called a facets

Fact: Any non-empty face $F \leq P$ can be obtained by turning some inequalities difining P into equalities. These are called binding inequalities for $\mathrm{F} . F=z \in P \mid c_{i} z=q_{i}$ for $i \in I$

A facet is characterized by a single binding inequality (which is not redundant).
The best-response polyhedron consists of a player's mixed strategies and the expected payoffs (+larger values) of the other player.

Example: For player 2 in the previous game $\bar{Q}=\left\{\left(y_{4}, y_{5}, u\right) \mid\right.$

$$
\left(\begin{array}{c}
3 y_{4}+3 y_{5} \leq u \\
2 y_{4}+5 y_{5} \leq u \\
0 y_{4}+6 y_{5} \leq u \\
y_{4} \geq 0 \\
y_{5} \geq 0 \\
y_{4}+y_{5}=1
\end{array}\right)
$$

\}

