Bonn-Aachen International Center for Information Technology Cryptography and Game Theory IPEC Winter 2012

Raekow, Ziegler

Scribe(s): David Möller

Lecture 14, Date: 22.03.2012

1 Game Theory

1.1 Recall

Best-response polyhedron $\bar{P} = (x, v) \in R^M x R | x \ge vec0, B^T x \le \vec{1}v, \vec{1}x = 1 \bar{Q} = (y, u) \in R^N x R | Ay \le \vec{1}u, y \ge vec0$ Facets are either own strategies (e.g. 4, 5 in the case of \bar{Q}) or strategies of the other player (e.g. 1,

2, 3 in the case of \overline{Q})

In particular, facets 1, 2 and 3 indicate best responses along with payoffs, e.g. for $y_4 \ge \frac{2}{3}$ a best response is 1. Facets 4 and 5 indicate when the respective own strategy has probability 0.

Def.: A point $(y, u) \in \overline{Q}$ has *label* $k \in M \cup N$ if the k^{th} inequality in the definition of \overline{Q} is binding. For $k = i \in M$ this means $(Ay)_i = u$ (meaning strat *i* is a best response to *y*) For $k = j \in N$ this means $y_j = 0$ (meaning $y \notin supp(y)$)

Exp: $(\frac{2}{3}, \frac{1}{3}, 3) \in \overline{Q}$ has labels 1, 2.

Prop: A NE is a pair (x, y) of mixed strategies, such that with corresponding payoffs $u = x^T Ay$, $v = x^T By$, the pair $((x, v), (y, u)) \in \bar{P}x\bar{Q}$ is completely labeled, i.e. every label appears as a label of (x, v) or (y, u).

Simplify under the assumption that A, B^T are nonnegative and have no zero colums (nonzero payoffs). $\overline{P} = x \in \mathbb{R}^M | x \ge vec0, B^T x \le \vec{1}, \overline{Q} = y \in \mathbb{R}^N | Ay \le \vec{1}, y \ge vec0$

Remark: New Notions! x and y are now skaled (by u and v) versions of those from above. So they don't sum up to 1 anymore, but the ratio is still the same.

 $\bar{P} \longleftrightarrow^{|:|} P \backslash \vec{0} (x, v) \longrightarrow \frac{x}{v} v = (1^T x)^{-1} \longleftarrow x (x * v, v)$

This correspondence maps facets to facets and in partivcular labelled points to points with the same labels.

Cor.:

A NE is a completely labeled pair (x, y), where $x \in P \setminus \vec{0}, y \in Q \setminus \vec{0}$

Exp.:

Algo:

Equilibrium by vertex enumeration Input: nondegenerate bimatrix game Output: all NE of that game

1. NE = []

- 2. for all vertices $x \in P \setminus \vec{0}$ and all vertices $y \in Q \setminus \vec{0}$: if (x, y) is completely labeled: NE.append $(\frac{x}{1^T x}, \frac{y}{1^T y})$
- 3. return NE

For n=m: \sharp support pairs $\approx 4^n$ \sharp vertex pairs $\approx 2.6^n$

Algorithm: LEMKE - HOWSON Input: nondegenerate bimatrix game Output: one(!) NE

- 1. $(x, y) \leftarrow (vec0, vec0) \in PxQ$ artificial equilibrium completely labeled
- 2. Pick a label $k \in M \cup N$ and drop it from (x, y). Call new vertex (x', y')
- 3. While (x', y') is not compaletely labeled alternatingly drop duplicate labels and call resulting new verex (x', y').
- 4. return $\left(\frac{x'}{vec1^Tx'}, \frac{y'}{vec1^Ty'}\right)$

Prop.: Lemke-Howson terminates and returns a NE.

Proof: For a fixed random choice k the traversal graph of visited vertices has only vertices of degree 1 (exuilibria) 2 (drop in P or in Q). The endpoints are completely labeled. Their number is even and subtracting the artifial one yields.

Cor.: A nondegenerate bimatrix game has an odd number of NE.