1 Game Theory

1.1 Recall

Best-response polyhedron $\bar{P}=(x, v) \in R^{M} x R\left|x \geq v e c 0, B^{T} x \leq \overrightarrow{1} v, \overrightarrow{1} x=1 \bar{Q}=(y, u) \in R^{N} x R\right| A y \leq \overrightarrow{1} u, y \geq v e c($
Facets are either own strategies (e.g. 4,5 in the case of \bar{Q}) or strategies ot the other player (e.g. 1, 2,3 in the case of \bar{Q})

In particular, facets 1,2 and 3 indicate best responses along with payoffs, e.g. for $y_{4} \geq \frac{2}{3}$ a best response is 1 . Facets 4 and 5 indicate when the respective own strategy has probability 0 .

Def.: A point $(y, u) \in \bar{Q}$ has label $k \in M \cup N$ if the $k^{t h}$ inequality in the definition of \bar{Q} is binding. For $k=i \in M$ this means $(A y)_{i}=u$ (meaning strat i is a best response to y) For $k=j \in N$ this means $y_{j}=0$ (meaning $y \notin \operatorname{supp}(y)$)

Exp: $\left(\frac{2}{3}, \frac{1}{3}, 3\right) \in \bar{Q}$ has labels $1,2$.
Prop: A NE is a pair (x, y) of mixed strategies, such that with corresponding payoffs $u=x^{T} A y$, $v=x^{T} B y$, the pair $((x, v),(y, u)) \in \bar{P} x \bar{Q}$ is completely labeled, i.e. every label appears as a label of (x, v) or (y, u).

Simplify under the assumption that A, B^{T} are nonnegative and have no zero colums (nonzero payoffs). $\bar{P}=x \in R^{M}\left|x \geq \operatorname{vec} 0, B^{T} x \leq \overrightarrow{1} \bar{Q}=y \in R^{N}\right| A y \leq \overrightarrow{1}, y \geq v e c 0$

Remark: New Notions! x and y are now skaled (by u and v) versions of those from above. So they don't sum up to 1 anymore, but the ratio is still the same.

$$
\bar{P} \longleftrightarrow|:| P \backslash \overrightarrow{0}(x, v) \longrightarrow \frac{x}{v} v=\left(1^{T} x\right)^{-1} \longleftarrow x(x * v, v)
$$

This correspondence maps facets to facets and in partivcular labelled points to points with the same labels.

Cor.:
A NE is a completely labeled pair (x, y), where $x \in P \backslash \overrightarrow{0}, y \in Q \backslash \overrightarrow{0}$
Exp.:
Algo:
Equilibrium by vertex enumeration Input: nondegenerate bimatrix game
Output: all NE of that game

1. $\mathrm{NE}=[]$
2. for all vertices $x \in P \backslash \overrightarrow{0}$ and all vertices $y \in Q \backslash \overrightarrow{0}$: if (x, y) is completely labeled: NE.append $\left(\frac{x}{1^{T} x}, \frac{y}{1^{T} y}\right)$
3. return NE

For $\mathrm{n}=\mathrm{m}$:
\sharp support pairs $\approx 4^{n}$
\sharp vertex pairs $\approx 2.6^{n}$

Algorithm: LEMKE - HOWSON
Input: nondegenerate bimatrix game
Output: one(!) NE

1. $(x, y) \leftarrow(v e c 0, v e c 0) \in P x Q \sharp$ artificial equilibrium completely labeled
2. Pick a label $k \in M \cup N$ and drop it from (x, y). Call new vertex $\left(x^{\prime}, y^{\prime}\right)$
3. While $\left(x^{\prime}, y^{\prime}\right)$ is not compzletely labeled alternatinglydrop duplicate labels and call resulting new verex $\left(x^{\prime}, y^{\prime}\right)$.
4. return $\left(\frac{x^{\prime}}{v e c 1^{T} x^{\prime}}, \frac{y^{\prime}}{v e c 1^{T} y^{\prime}}\right)$

Prop.: Lemke-Howson terminates and returns a NE.
Proof: For a fixed random choice k the traversal graph of visited vertices has only vertices of degree 1 (exuilibria) 2 (drop in P or in Q). The endpoints are completely labeled. Their number is even and subtracting the artifial one yields.

Cor.: A nondegenerate bimatrix game has an odd number of NE.

