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1 Cryptography

In this lecture we show first a protocol for secure multiplication. It will work for 3 parties. Later we
will generalize our ideas of secure addition/multiplication for more parties and more general functions.
In this sence we will discuss a protocol for circuit evaluation and give a definition of Shamir’s secret
sharing.

1.1 Secure Multiplication

The situation is that there are three parties (P1, P2, P3). The first two parties possess values a ∈ Zp and
b ∈ Zp (resp.). Without revealing a and b they want to compute the product ab mod p. A protocol
that achieves this is described in the following:

The starting position is:

n = 3

P1 : a ∈ Zp

P2 : b ∈ Zp

The protocol works as follow:

1.Split We split the values a and b randomly in a sum of three summands:

a = a1 + a2 + a3 mod p

b = b1 + b2 + b3 mod p

2.Share The values ai and bi (i = 1, 2, 3) are shared in this way:

P1 P2 P3

a2 a1 a1

a3 a3 a2

b2 b1 b1

b3 b3 b2

Now P1 knows a2, a3, b2 and b3, P2 knows a1, . . .
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3.Compute Now we let each party compute one of the three values u1, u2 and u3:
P1 computes P2 computes P3 computes

u1 u2 u3

:= := :=

a2b2 a1b3 a1b1
+ + +

a2b3 a3b1 a1b2
+ + +

a3b2 a3b3 a2b1

We can use the protocol secure addition (discussed earlier) such that that the players learn the sum
u1 + u2 + u3, but none of the summands u1, u2.

It is easy to see that ab = a2b2+a1b3+a1b1+a2b3+a3b1+a1b2+a3b2+a3b3+a2b1 = u1+u2+u3.
That means correctness is given.

Also privacy holds because each party knows only two shares of a value (a or b). So no party can
compute more than one value ui (he would need more shares). On the other hand no party knows the
value ui of another party as secure addition is privat.

1.2 Protocol for Circuit Evaluation

In general a protocol for MPC works in three steps:

1. Sharing

2. Local computation

3. Output reconstruction

Until now we have just discussed protocols for 3 players. Of course, we want to generalize the
protocols of secure addition and secure multiplication for more players. But there is one more disad-
vantage that we do not want to keep. If two players collaborate they can learn additional informations.
Now, if we have more than 3 players this would be poor. If t < n/2 adversaries get together after
computation the protocol (Shamir’s secret sharing) remains secure against semi-honest adversaries.
We still assume that the (unbounded) adversaries follow the protocol.

1.2.1 Shamir’s secret sharing

This protocol works for n ≥ 3 parties. If we want to share a secret s ∈ F we choose randomly a
polynomial fs ∈R F[X] with the following properties:

• deg(fs) = t

• fs(0) = s

And we give to each player i a share fs(xi) where xi 6= xj for i 6= j. Usually we choose xi = i.
There are some basic facts:

• If one distributes fewer than t shhares, they do not certain information about s.
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• If one distributes t + 1 or more shares, then we can reconstruct the secret.

In order to compute fs(0) (which is the secret s) we pick t + 1 values xi and their shares si :=
fs(xi). We can write

fs(x) =
∑
i

fs(xi)Li(x)

where Li =
∏

j 6=i
x−xj

xi−xj
are the Lagrange polynomials.

Now player i computes locally wi := siri where ri := Li(0). When every player publish her value
wi the players can easily compute the secret

s = fs(0) =
∑
i

wi =
∑
i

siri =
∑
i

siLi(0).

Example. P1, . . . , P5 want to tolerate t = 2 corrupted parties. We work in F = Z23 and want to share
the secret s = 19. So we choose two values a1, a2 ∈R F, say a1 = 9 and a2 = 11. That means our
polynomial is

fs(x) = s + a1x
2 + a2x + 19 = 11x2 + 9x + 19 mod 23.

Now we can compute the shares:

s1 = fs(1) = 16

s2 = fs(2) = 12

s3 = fs(3) = 7

s4 = fs(4) = 1

s5 = fs(5) = 17

We pick the values of P3, P4 and P5. They compute wi = si
∏ −xj

xi−xj
:

w3 = 7

(
−4

3− 4

)(
−5

3− 5

)
= 1

w4 = 8

w5 = 10

It remains that we add them to each other

w1 + w2 + w3 = 19 mod 23.

And in this way the parties know the secret.

1.2.2 Arithmetic circuits

The MPC protocol is secure against semi-honest adversaries. The number of players is n ≥ 3. Each
party Pi possess an input xi. We want to compute a function

f : Fn → Fn

(x1, . . . , xn)→ (y1, . . . , yn)

The mapping between input and output is described as an arithmetic circuit.
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Definition. An arithmetic circuit is a directed, acyclic graph. Each node is called a gate and each edge
is called a wire. There are five types of gates:

• input gates

– no incoming wires

– one outgoing wire

• addition and multiplication gates

– two incoming wires

– any number of outgoing wires

• multiply by constant gates

– one incoming wire

– any number of outgoing wires

• output gates

– one incoming wire

– no outgoing wires

2 Game Theory

In this lecture we will discuss games in which players choose their strategy randomly. Therefore it
will be necessary to expand our idea of a NE. Forthermore we will introduce an instance that gives a
proposition for a strategy to each player and we will examine the effect of such an instant.

2.1 Solutions in mixed strategies

We want that each player choose his strategy with a certain probability. Therefore we need some
notation.

Let ∆(Ai) denote the set of probability distributions on Ai. A mixed strategy is juste an element
si ∈ ∆(Ai), in contrast to a pure strategy ai ∈ Ai. For any x ∈ Ai we have now

si(x) = Probsi(ai = x).

The set of all x ∈ Ai with si(x) > 0 is called the support of si. We write

supp(si) = {x ∈ Ai|si(x) > 0}.

We will assume risk-neutrality. What it means we see in the following example.

Example. We consider the game who will be the millionaire. A person has reached 25,000$. Now he
can stop the game and will get 25,000$ for sure or he can guess the answer of the next question. If he
choose the right one he wins 100,000$, otherwise only 10,000$. What should he do?

In order to answer this question we compute the expected value. The person can expect a gain of
1/4 · 100, 000 + 3/4 · 10, 000$ which is more than 25,000$. What we mean with risk-neutrality is that
the person will decide to guess the answer cause of the higher expected value even if there is a (high)
probability to loose an amount of money.
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So we need to compute expected utlities by linear combinations. We write

ui(s) = Ex∈A(ui(s(x))).

With this notation we can give an expanded definition of a NE.

Definition. A vector s = (s1, . . . , sn) of mixed strategies in a game G = (N, (Ai), (ui)) is a mixed
Nash Equilibrium, if for each player i and every mixed strategy s′i ∈ ∆(Ai), we have

ui(si, s−i) ≥ ui(s
′
i, s−i).

Example (BoS). We consider the game Baseball or Softball given by the following table:

B S
B (2, 1) (0, 0)

S (0, 0) (1, 2)

We claim that s = ((2/3, 1/3)︸ ︷︷ ︸
=s1

, (1/3, 2/3)︸ ︷︷ ︸
=s2

) is a mixed NE. The expected utility of player 1 is

u1 = 2
9 · 2 + 2

9 · 1 = 2
3 . We consider the case where player 1 changes his strategy s1 to s′1 = (p, 1− p).

Then the expected utility is

u1(s
′) = 2p · 1

3
+ (1− p) · 2

3
· 1 =

2p

3
+

2

3
− 2p

3
=

2

3
.

We saw that the utility doesn’t change if player 1 changes his strategy. The same argument works
also for player 2 as the utlily functions are symmetric. Hence s is a mixed NE.

Theorem (Nash, 1951). Every finite strategy game has a mixed NE.

Proof idea. One can proof the theorem by defining a best-response function B : A→ {A} (:= power-
set of A), extend to ∆A1 × . . .×∆An → {∆A1 × . . .×∆An}. One observe that s is a mixed NE iff
s ∈ B(s). This leads to a fixpoint theorem. ut

2.2 Correlated equilibria

Now we want to introduce a third instance that gives propositions to the players.

Definition. A mediated version of the game G consists of two steps:

1. A mediator chooses a vector of actions a = (a1, · · · , an) according to some distribution M . She
hands ai (as recommendation) to player i.

2. The players play G.

Definition. A distribution M ∈ ∆(A) is a correlated equilibrium if for all a ∈ supp(M), for all i ∈ N
and for all a′i ∈ Ai, the following holds:

ui(a
′
i, a−i|ai) ≤ ui(ai, a−i|ai).

Example. We look at the game given by the following table:
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L M R
U (2, 1) (1, 2) (0, 0)

M (0, 0) (2, 1) (1, 2)

D (1, 2) (0, 0) (2, 1)

There are

no pure NE

one mixed NE
(
1
3 ,

1
3 ,

1
3

) (
1
3 ,

1
3 ,

1
3

)
with expected payoff 1.

at least one correlated equilibrium by

M ∈R {(U,L), (U,M), (M,M), (M,R), (D,L), (D,R)}

uniformly for an expected payoff of 3
2 .

3 Exercises

3.1 Exercise 1.2

(i) f(x1, x2, x3) = (x1 =? x2) · (x2 =? x3).

(ii) a =? b corresponds to 1− (a− b)p−1 mod p.

(iii) (x1 − x2)
2 + (x2 − x3)

2 + (x1 − x3)
2 =? 0 mod p where p ≥ 3g2 + 1

3.2 Exercise 1.3

Actually the exercise is wrong. If the value of the offered object is 0, then the dominant strategy is to
bid 0. So let’s assume that the object has a positive value.

If we win the auction (with a positive bid), we could have bidden less than our actual bid because
the other bids are lower. So we have found a situation where the strategy to bid a positive value is not
optimal and hence not dominant.

So let’s see what happen if we don’t bid. Then we could loose the auction even if all players also
bid 0. Then we could have won with a very small bid and we could have gained a almost the value of
the offered object.

We see to give a bid or not is in some situations not optimal. Hence there is no dominant strategy.

3.3 Exercise 1.4

If G = (N,A, (ui)), then the strategic game is

N = {P1, P2}

A = R+
0

u1(t1, t2) =


−t1 t1 < t2

v1/2− t1 t1 = t2
v1 − t2 t1 > t2

In a pure NE the situation that t1 = t2 never occurs. So one of the players can increase his gain to 0
conceding immediately.
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