
Bonn-Aachen International Center for Information Technology
Cryptography and Game Theory Raekow, Ziegler
IPEC Winter 2012

Scribe(s): Yona Raekow, Nevena Tacheva Lecture 5, Date: 15.03.2012

Protocol for MPC for n players

In this lecture we discuss the following:

1. Some definitions

2. Protocol

3. Proof sketch

1 Preliminaries

1.1 Setting

We consider n ≥ 3 players and we make the following assumptions:

1. There are secure channels between all players.

2. There is a subset C of players that are corrupted. The players behave semi-honest, meaning they
follow the execution of the protocol as specified, but get together afterwards and pool their inputs
and the outputs they received from the protocol.

1.2 Goal

We want to specify a protocol for n players, s.t. they can compute a function that is specified by
an arithmetic circuit together with an execution order, that specifies the order in which the gates are
executed. We want to make sure that nothing is revealed about the private inputs of the players and that
the players learn only the outcome of the function evaluation, players should only learn their private
result.

1.3 Notation

We write [a; f]d, where a ∈ F is a polynomial over F[x] with f(0) = a and deg(f) = d. So [a; f]d =
(f(1), .., f(n)) are the shares of a secret a computed using the polynomial f of degree d. With this
notation we can define the following operations. Let f, g, be polynomials over F[x] and a, b, α ∈ F.

1. Addition: [a; f]d + [b; g]d = (f(1) + g(1), .., f(n) + g(n)) = [a+ b; f + g]d, i.e. adding shares
of the secrets a and b in shares of a+ b. Where the secret a was shared using f and b was shared
using g, and the shares of the secret a+ b were computed from the polynomial f + g.

1

2. Multiply by constant: α · [a; f]d = (α · f(1), .., α · f(n)) = [α · a;α · f]d, i.e. multiplying a
share of the secret a with a constant α results in a share of the secret α · a, where a was shared
using f and α · a is shared using α · f .

3. Multiplication: [a; f]d · [b; g]d = (fg(1), .., fg(n)) = [a · b; f · g]2d, i.e. given a share of the
secret a and a share of the secret b, that were shared using the polynomials f and g respectively,
multiplying a share of a and a share of b results in a share of the secret ab computed from the
polynomial fg. Note that fg has degree 2d.

We need the following statements in the protocol:

1. Pi distributes [a; fa]d: Pi choses fa at random s.t. the degree of (fa) = d, fa(0) = a and send
shares fa(j) to Pj for j = 1, .., n.

2. Players hold [a; fa]d: Players have obtained the shares of a secret a that were computed using
the polynomial fa.

3. Players compute [a; fa]d + [b; fb]d: Suppose that the players have shares of the secrets a and b.
Each player Pi computes fa(i) + fb(i). So after that players hold [a+ b, fa + fb]d.

4. Players compute α · [a; fa]d: Suppose that the players have shares of the secrete a Each player
Pi computes α · fa(i). So after that players hold [α · a, α · fa]d.

5. Players compute [a; fa]d · [b; fb]d: Suppose that the players hold [a; fa]d and [b; fb]d. Each player
Pi computes fa(i) · fb(i). So after that players hold [a · b, fa · fb]2d.

2 Circuit evaluation protocol with passive security (CEPS):

In this section we present a protocol for n players that can securely compute a function, given by
an arithmetic circuit, even if t players are corrupted. The protocol together with detailed proofs is
described in [Cramer et al., 2011].

1. Input sharing: Each player Pi holding input xi ∈ F distributes [xi, fxi]t.

2. Computation phase: Repeat the following until all gates in the execution order have been pro-
cessed. Pick the first gate that has not been processed yet. Depending on the gate do one the
following:

• Addition gate: The players hold [a; fa]t, [b; fb]t for the two inputs to this gate. The players
compute [a; fa]t + [b; fb]t = [a+ b; fa + fb]t.
• Multiply by constant gate: The players hold [a, fa]t, where a is the input to this gate. The

players compute α[a, fa]t = [αa, αfa]t.
• Multiplication gate:

(a) The players hold [a; fa]t, [b; fb]t for the two inputs to this gate. The players compute
[a; fa]t · [b; fb]t = [ab; fafb]t.

(b) Let h = fafb, then h(0) = ab. The players hold [ab, fafb]2t, i.e. they know h(i). Each
Pi distributes [h(i), fi]t.

(c) We note that the degree of h = 2t ≤ n− 1. Let r = (r1, . . . , rn) be the recombination

vector 1, that we saw in the last lecture. We know that h(0) =
n∑

i=1
rih(i) for any

1ri =
∏
i 6=j

−j
i−j

, so the ri do not depend on h, they work for any polynomial of degree ≤ n− 1.

2

polynomial h of degree ≤ n − 1. So the players can compute a share of the value ab
that was distributed using a polynomial of degree only t in the following way:∑

i

ri[h(i); fi]t = [
∑
i

rih(i);
∑
i

rifi]t = [h(0);
∑
i

rifi]t = [ab;
∑
i

rifi]t.

3. Output reconstruction: After all gates – including the output gates have been processed, all
players do the following: For each output gate yi the players hold [yi; fyi]t, where yi is the value
assigned to the ith output gate. Each Pj sends fyi to Pi, who can use Lagrange interpolation to
recover his output yi. Note that yi = fyi(0).

3 Analysis of CEPS

We make the following remarks:

1. After the input phase all input gates have been processed. I.e. the input gates have specific values.
Think of it in the following way: Each player holds locally a copy of the circuit. After the input
phase he receives shares from all the players. The share he receives from player Pi is the input
to the ith input gate of his local copy of the circuit.

2. We maintain the following invariant: Computing the circuit on x1 . . . xn assigns a unique value
to every wire in the circuit. Let a ∈ F a value assigned to some wire in the circuit during the
computation. This wire can either be an input wire to a gate, or an output wire (or both). After
the gate that is connected to this wire is processed, all players hold [a, fa]t, for some polynomial
fa.

We will show in the following that the protocol provides

1. Perfect correctness with probability 1. All players receive outputs that are correct based on the
inputs that were supplied.

2. Perfect privacy: Any subset C of corrupt (semi-honest) players with 1 ≤ |C| ≤ t, where t < n
2

learns no information beyond {xi, yi}Pi∈C from executing the protocol, regardless of the com-
putational power.

3.1 Correctness

If the invariant is maintained then correctness holds.

3.2 Privacy

Observe that corrupted players receive two types of messages from the honest players.

1. In the input sharing an multiplication they receive [xi, fxi]t or [h(i), fi]t, respectively.

2. In the output reconstruction they receive all shares [yi, fyi]t for each output yj which corresponds
to a Pj ∈ C.

Privacy then follows from two observations:

3

Observation 1 All values sent by honest players to corrupted players in the input phase or when
a multiplication gate is executed are shared using polynomials that were selected at random and that
have degree t. Since there are at most t corrupted parties, they can pool at most t shares of any of these
polynomials. Therefore, their shares look like an values that were selected at random.

Observation 2 Note that the values [yi, fyi]t could have been computed by the corrupted parties
themselves. Before the output reconstruction the parties know fyj (j) for each j ∈ C. But they also
know that fyj (0) = yj . So they know the points of all players on fyj , i.e. they can compute fyj (i) for
all Pi 6∈ C.

References

[Cramer et al., 2011] Cramer, R., Damgrd, I., and Nielsen, J. B. (2011). Secure multiparty computa-
tion. Book Draft.

4

