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1 Circuit Protocol (CEPS)

We are discussing Circuit Protocol (CEPS). If ¢ < & parties are semi-honest then CEPS guaranties
perfect correctness and privacy.
We will summarize this in the following table.

H semi-honest ‘ active ‘

perfect secure t<3g t <
computationaly bounded (PPT) t<n t <
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1.1 Protocols

Now let see "Why we design a protocols?”.

From cryptographic point of view a protocol is designed to achieve a common goal. (i.e. Sharing
a secret data, exchange some information, keeping the privacy). On the other hand the Game Theory
subject tries to predict the outcome of given situation that best achieves given goals.

Let’s look at the protocol from cryptographic point of view. What can be useful to play “matching
pennies”? Matching pennies is a simple game which is played by two players. In all cases either player
1 is a winner or player 2. Each player throw a coin simultaneously with the other one. And then they
decide who wins on the following rules. Player 1 wins if the both coins are with the same side on the
ground. Otherwise wins the player 2.

Here is the payoff matrix of the game:

| P1\ P2 || Head | Tail |
Head 1,-1 | —-1,1
Tail —1,1]1,-1

1.2 Commitment Protocols

Here is a problem from the reality. Alice wants to prove to Bob that she can predict a result of an
event. How she can do that, in such way, thus Bob can be sure that she has not changed her mind after
the actually event ? This example sound too abstract, lets pick a simple representation of this general
problem. Alice wants to prove to Bob that she can predict the result from a coin flip. How she can do
that, such that Bob is sure that she doesn’t cheat?

Commitment Schemas give the answer of this problem. They have tow phases.

1. Commit phase - Alice takes a prediction, puts it in a box, locks it and gives the box to Bob.



2. Opening phase - Alice gives Bob the key for the box.

Note: The box is locked in commit phase, because Bob can change the prediction if the box is not
locked.
Such schemas should suffice the following 3 properties:

1. Completeness - Bob can open the commitment and finds the value, put by Alice.
2. Secrecy - As long as Alice doesn’t give the key to Bob, he cannot now Alice’s prediction.
3. Binding - Bob knows that as soon as he has the box, Alice’s prediction is fixed.

In short. The firsts property guaranties that the result of the experiment can be checked. The second
one guaranties that Bob doesn’t know the prediction. And the last one means that the predicted value
is fixed and doesn’t depend on the key which Bob will get from Alice.

The last point is very important, otherwise Alice can try to hack the system and cheat Bob.

1.3 Pseudo Random Number Generator (PRNG)

We will try to answer the following questions in this section. What is PRNG? Where it is applied?

Definition 1 (PRNG) A function G : {0,1}*— > {0,1}* is PRNG if the followings properties are
sufficed:

1. Efficiency - G can be deterministically computed in polynomial time (PPT)
2. Expansion - |G(x)| = l(|z|) for some expansion function L(x) ;; n

3. Pseudo randomness - For any PPT algorithm D (distinguisher) there is a negligible function, s.t.
| Pr[D(G(x) = 1]« _yn — Pr[D(z) = 1] | < e(n)

Un - is uniform distribution

seed

Z<_Ul(n)

PRNG

output Where the seed is n-bit long and output is [(n) bit long.

Remark:

1. Can construct a One Time Pad secure against PPT adversaries.

2. PRNGs exists. provided that one-way function exists.

Here we will discus a protocol for bit commitment (Naor *91). Let G : {0,1}"— > {0,1}3n be a
PRNG.

[Model goes here]

Let G : {0,1}"— > {0,1}>" be PRNG. Let denote Alice’s prediction with b € {0,1}. Here is
simple formalization of the protocol in few steps:



1. Bob picks n € {0, 1}3" (@ random). Then he sends n to Alice.

Alice picks r €r {0, 1}" (@ random). Now follows the commitment phase.
Alice computes ¢ as follows: if b = 0 then ¢ = G(r) else ¢ = G(r) & n.
Then ¢ which was computed in previous step is sent back to Bob.

Bob stores n, c.

Bob executes the experiment. To open the Alice’s box he need the key.

Alice sends the key r to Bob.
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Bob computes G(r). If c = G(r) thenb = 0. If c = G(r) & n then b = 1.
Now we will prove some good characteristics of this model.
e Correctness - this is proved by the way we have constructed the protocol.

e Security - this follows from G' which is PRNG, Vn € {0,1}3n, Us,- uniform distribution. and
Usy, @ n which are identically distributed. Proof: Thus if Bob finds a n, s.t. G(r) and G(r) &
n are distinguishable then either G(r) and Us,, are distinguishable or G(r) & n and Us,, are
distinguishable (or both). This is contradiction with that G' is PRNG.

e Binding - If Alice is able to convince Bob with Pr > 1+¢(n), for €(n) non-negligable probability
that she picked 1 — b instead of b, she must be able to choose 71,2, s.t. G(r1) = G(r2) @& n with
Pr > €(n) for any chosen n by Bob.

For any n = G(s1) ® +G(s2) there are unique s, s2. Actually there are 2" possible values for
s1 and 2" possible values for so. Therefore at most 22" “bad” n values. Since the space of all
n is 237, Bob has a chance of selecting a ”bad” value with probability 2% So even if Alice can
compute such pair sy, sz, she can do this with probability at most 2%

Now we will discuss Blum’s protocol for matching pennies. Recall the game and it’s goal from the
beginning of this lecture.

[Model goes here]

Here is simple formalization of the protocol in steps:

1. Alice picks g €r {0, 1} (@ random). Now follows the commitment phase.
. Alice computes c as follows: ¢ = com(rg).
. Then ¢ which was computed in previous step is sent back to Bob.
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4. Bob picks r; €r {0,1} (@ random). Then he sends r to Alice.
5. Bob compares if r; = 7 then Alice wins, otherwise Bob wins.
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. Alice opens c. She computes the same as Bob if 1 = r( then Alice wins, otherwise Bob wins.

The protocol from above guarantees that all parties will receive their output from the protocol
simultaneously.

Theorem 2 (Cleve ’86) For any protocol where [arties agree on one bit, there exist a strategy for one

of the parties to bias the output by at least % where [ is the number of rounds in the protocol.

The theorem is out of the scope of this course, but proof could be found in [1].



