10. Exercise sheet
Hand in solutions until Sunday, 24 June 2012, 23:59

Exercise 10.1 (Blind signatures). (8+4 points)

As seen in the lecture it is sometimes required that a signature protocol between two parties ALICE and BOB runs in such way that BOB signs implicitly a message m on behalf of ALICE, but does not know explicit by the message he is signing. Thus BOB cannot associate the signature to the user ALICE. Such protocols are called blind signatures and play a key role in electronic cash schemes and voting protocols.

We describe a blinding protocol based on the RSA signature scheme. Let BOB have the secret and public RSA keys $sk = (N, d)$ and $pk = (N, e)$. In order to receive blind signatures from BOB, ALICE uses her own blinding key $k \in \mathbb{Z}_N$ with $\gcd(k, N) = 1$.

Suppose that ALICE wants to have BOB sign the message $m \in \mathbb{Z}_N$ so that the signature can be verified but BOB cannot recover the value of m. Consider the following protocol.

1. ALICE sends $M = m \cdot k^e \in \mathbb{Z}_N$ to BOB.
2. BOB produces the signature $\sigma = \text{sig}_{sk}(M) = M^d \in \mathbb{Z}_N$ and sends it to ALICE.
3. ALICE recovers $\text{sig}_{sk}(m) = k^{-1} \cdot \sigma \in \mathbb{Z}_N$.

(i) Show that the above protocol produces a valid signature and fulfills the requirements for a blind signature scheme.

(ii) Consider the first eCash protocol from the lecture with this RSA blind signature scheme. Alice chooses 100 messages m_i (all with the same amount but with different serial numbers) and 100 blinding keys k_i. The Bank chooses j and ask Alice to reveal all k_i with $i \neq j$. Then the Bank computes a signature σ of M_j and sends it back to Alice. Can Alice recover a valid signature from σ for another message m'? If yes, how much control does Alice have on the message m' (say, can she change the amount to a certain value)?
(iii) Design a blind signature scheme based on the ElGamal signature algorithm and explain why it has the properties of a blinding scheme.

Exercise 10.2 (Coin flipping by telephone). (10 points)

(i) Read Blum (1983).

(ii) What are the properties of a coin-flipping protocol? What additional properties does the proposed protocol fulfill?

(iii) On which assumptions does the protocol rely?

(iv) Which conditions should the modulus \(n \) satisfy? How can these conditions be checked by Alice?

(v) Describe the proposed protocol and prove that the first of the properties of a coin-flipping protocol holds.

(vi) How could Alice cheat if she knows a factorization of \(n \)?

Hint: Extracting square roots modulo a composite number \(n \) is computational as hard as factoring \(n \).

Exercise 10.3 (Compositions of hash functions). (6 points)

Consider to functions \(g: \{0, 1\}^n \rightarrow \{0, 1\}^m \) and \(f: \{0, 1\}^m \rightarrow \{0, 1\}^\ell \) with \(n > m > \ell \) and their composition \(f \circ g: \{0, 1\}^n \rightarrow \{0, 1\}^\ell \). Prove the following.

(i) If \(f \) is one way then \(f \circ g \) is one way.

(ii) If \(f \circ g \) is collision resistant then \(g \) is collision resistant.

(iii) If \(f \circ g \) is collision resistant then \(f \) is collision resistant or \(g \) is one way.

(iv) If \(f \) and \(g \) are both collision resistant then \(f \circ g \) is collision resistant.

References