
The art of cryptography: security,

reductions, and group cryptography

Prof. Dr. Joachim von zur Gathen, Konstantin Ziegler

1. Assignment
(Due: Thursday, 12 April 2012, 1300)

Exercise 1.1 (Expected value of a random variable). We are given a discrete
random variable X, for example the result of a single roll of a fair die. The
values that X can take are denoted by x and the respective probability is
given by Prob(x ←− X). For the example, the x are taken from the set
A = {1, 2, 3, 4, 5, 6} each with Prob(x←− X) = 1/6.

We are interested in the expected value E(X) defined as

E(X) =
∑

x

x · Prob(x←−− X),

where the sum is taken over all possible values of X. In the example above,
this returns as the expected value for the roll of a single fair die

E(X) =
∑

x∈A

x ·
1

6
=

21

6
= 3.5.

Next, we roll the die until a certain number, say “2”, appears for the first

time. The random variable Y is now the number of rolls that are performed,
until this happens.

(i) (2 points) What is Prob(y ←− Y), i.e. the probability that “2” appears
for the first time in the yth roll?

(ii) (4 points) Prove E(Y) = 6. (Hint:
∑

∞

k=n q
k = qn/(1− q) for |q| < 1.)

(iii) (3 points) Generalize the preceding steps to prove the more general
statement.

Suppose that an event A occurs in an experiment with
probability p, and we repeat the experiment until A occurs.
Then the expected number of executions until A happens is
1/p.

Exercise 1.2 (Empirical security of RSA). For the security of RSA, one has
to consider the difficulty of factoring large numbers (which are a product of
two primes). The general number field sieve achieves a (heuristic, expected)

running time of 2((64/9+o(1))n log2
2
n)1/3 for n-bit integers. It is not correct to

think of o(1) as zero, but for the following rough estimates just do it. Facto-
ring the 663-bit integer RSA-200 needed about 165 1GHz CPU years, that
is 165 years on a single 1GHz Opteron CPU, using the general number field
sieve.

(i) (3 points) Estimate the time that would be needed to factor an n-bit
RSA number assuming the above estimate is accurate with o(1) = 0
(which is wrong in practice!) for n = 1024, 2048, 3072.

Exercise 1.3 (RSA key generation on light-weight devices). We investigate
the effect of seeds “with little randomness” on two procedures to generate
RSA moduli. The pseudocode for the the first procedure reads as follows.

1. pseudo-random_string = expand(seed)

2. p = generate_random_prime(pseudo-random_string)

3. q = generate_random_prime(pseudo-random_string)

4. return N = p*q

All procedures are deterministic and the only (possible) variation in each
execution is in the seed to the function expanding it to a pseudo-random
string.

(i) (3 points) Assume a seed with 20 bits of “true randomness”. After how
many calls do you expect a value for N that was already generated
before? After how many calls a value for N that has a nontrivial gcd
with one of the previously generated values?

Some implementations, for example OpenSSL’s RSA key generation, add
some randomness after generating the first prime, with the intention of in-
creasing security.

1. pseudo-random_string = expand(seed)

2. p = generate_random_prime(pseudo-random_string)

3. pseudo-random_string += add_randomness(bits)

4. q = generate_random_prime(pseudo-random_string)

5. return N = p*q

(ii) (4 points) Assume a seed with 20 bits of “true randomness” and also
20 bits for the added randomness. Answer the questions of (i) for this
second procedure.

2

	1

