The art of cryptography: security, reductions, and group cryptography

PROF. DR. JOACHIM VON ZUR GATHEN, KONSTANTIN ZIEGLER

10. Assignment

(Due: Thursday, 21 June 2012, 13⁰⁰)

Exercise 10.1 (Encryption scheme from key and data encapsulation mechanism). A key encapsulation mechanism (KEM) consists of three probabilistic polynomial-time (ppt) algorithms.

Algorithms 1: KEM

KEM-gen

Input: security parameter n in unary

Output: pair of public and private key (pk, sk)

KEM-encap

Input: public key pk

Output: pair $(k, c) \in K \times C$ of session key and its encapsulation

KEM-decap

Input: secret key sk and $c \in C$

Output: session key $k \in K$ or "failure"

You can think of a KEM as an asymmetric encryption scheme which – instead of encrypting messages – encrypts a random session key.

- (i) (1 points) Define "correctness" for a KEM.
- (ii) (4 points) To define "security" for a KEM, recall the distinguishing experiment $\mathsf{Dist}_{\mathcal{A},\Pi}$ for an asymmetric encryption scheme from Assignment 7. Write down the corresponding experiment $\mathsf{Dist}_{\mathcal{A},\mathrm{KEM}}$. (What are the input and the output? What is the challenge?) Define "security" of a KEM using this experiment.

The advantage of the attacker in this game is defined as

$$\operatorname{adv}_{\mathcal{A}, \operatorname{KEM}} = |\operatorname{prob}\{\operatorname{\mathsf{Dist}}_{\mathcal{A}, \operatorname{KEM}} = b\} - \frac{1}{2}|.$$

(iii) 2 Recall the derived experiment $\mathsf{Dist}^*_{\mathcal{A},\Pi}(b)$ for an asymmetric encryption scheme, where the internal bit b is fixed. The advantage of the attacker in this game is defined as $\mathsf{adv}^*_{\mathcal{A},\Pi} = |\mathsf{prob}\{\mathsf{Dist}^*_{\mathcal{A},\Pi}(n,1) = 1\} - \mathsf{prob}\{\mathsf{Dist}^*_{\mathcal{A},\Pi}(n,0) = 1\}|$. Show that

$$\operatorname{adv}_{\mathcal{A}}^* = 2\operatorname{adv}_{\mathcal{A}}.$$

[If you do not feel comfortable with KEMs yet, you can also show this for asymmetric encryption schemes.]

To obtain an encryption scheme we combine a KEM with a *data encapsulation mechanism* (DEM) consisting of two ppt algorithms.

Algorithms 2: DEM

DEM -enc

Input: session key k, message x

Output: ciphertext y

 $\operatorname{DEM-dec}$

Input: session key k and ciphertext y

Output: message x or "failure"

You can think of a DEM as a symmetric encryption scheme which – instead of having its own key-generation algorithm – is provided with a session key "from outside".

This analogy motivates a short break, to think about the power we want to give to an attacker of a DEM. For an asymmetric encryption scheme – as well as a KEM – the standard notion is a CCA2-attacker, that is with access to a decryption oracle before and after receiving the challenge. (With the only obvious restriction, that the challenge may not be submitted.) For an attacker of a DEM, we add to the powers of a CCA2-attacker access to an encryption oracle as well. (Why?)

(iv) (2 points) A simple DEM is inspired by the one-time pad. Let DEM -enc and DEM -dec return the XOR if its inputs. Is this IND-CCA2-secure?

We derive an encryption scheme from these two ingredients.

```
Algorithms 3: Encryption scheme \Pi from KEM and DEM
key generation
Input: security parameter n in unary
Output: pair of public and private key (pk, sk)
KEM-gen
encryption
Input: message x and public key pk
Output: pair (c^*,c)
(k, c) \leftarrow \text{KEM-encap}_{pk}
c^* \leftarrow \text{DEM-enc}_k(x)
return (c^*, c)
decryption
Input: ciphertext (c_1, c_2) and secret key sk
 Output: message x or "failure"
k^* \leftarrow \text{KEM-decap}_{\mathsf{sk}}(c_2)
x^* \leftarrow \text{DEM-dec}_{k^*}(c_1)
return x^*
```

Let us show that for any ppt attacker \mathcal{A} on Π , there are ppt attackers \mathcal{A}_1 and \mathcal{A}_2 on KEM and DEM, respectively, such that

$$\operatorname{adv}_{\mathcal{A},\Pi} \leq \operatorname{adv}_{\mathcal{A}_1,KEM}^* + \operatorname{adv}_{\mathcal{A}_2,DEM}$$
.

Let $\mathsf{Dist}_{\mathcal{A},\Pi}$ be the original experiment of \mathcal{A} against Π . Let (c_1,c_2) denote the challenge ciphertext, b the hidden bit generated by the experiment and b^* the output bit of \mathcal{A} . Let T_0 denote the event that $b=b^*$. Also, let k denote the session key generated by KEM-decap_{pk}.

We define a modified experiment $\mathsf{Dist}_{\mathcal{A},\Pi}^{(1)}$, where we use a completely random session key k^+ instead of k to answer all encryption and decryption requests. Let T_1 be the event that $b = b^*$ in $\mathsf{Dist}_{\mathcal{A},\Pi}^{(1)}$.

- (i) (3 points) Show that there is an adversary A_1 against KEM, such that $\operatorname{adv}_{A_1,\text{KEM}}^* = |\operatorname{prob}\{T_0\} \operatorname{prob}\{T_1\}|$.
- (ii) (3 points) Show that there is an adversary A_2 against DEM, such that $adv_{A_2,DEM} = |prob\{T_1 1/2\}|$.
- (iii) (2 points) Conclude for $adv_{\mathcal{A},\Pi}$ and the security of Π .