The art of cryptography: security, reductions, and group cryptography

PROF. DR. JOACHIM VON ZUR GATHEN, KONSTANTIN ZIEGLER

3. Assignment

(Due: Thursday, 26 April 2012, 13⁰⁰)

Exercise 3.1 (Simple distinguisher). Suppose that n is even and X is a random variable that takes only values with exactly n/2 ones, and each value with the same probability: if $x \in \mathbb{B}^n$ and $\operatorname{Prob}\{x \stackrel{\text{\tiny{de}}}{\longleftarrow} X\} > 0$, then $w(x) = \frac{n}{2}$. Here w(x) is the Hamming weight of x, that is, the number of ones in x. Then the following deterministic algorithm \mathcal{A} distinguishes between X and the uniform variable U_n on \mathbb{B}^n : on input x, return 1 if w(x) = n/2 else return 0.

- (i) (2 points) Compute $\mathcal{E}(\mathcal{A}(X))$.
- (ii) (4 points) For the uniform distribution U_n on n bits, derive an explicit formula for $\mathcal{E}\{\mathcal{A}(U_n)\}$.
- (iii) (2 points) Compute the distinguishing power of \mathcal{A} between U_n and X for n = 2, 10, 100.

Exercise 3.2 (Predictors). (5 points) Consider the linear congruent generator which is given by $x_i = sx_{i-1} + 1$ in \mathbb{Z}_m . Let m = qs + 1 be with s odd and q even integers. Let $z_i = x_i \mod 2$ be the least significant bit of x_i .

(i) Prove that $B_i(z) = 1 - z_{i-1}$ is an ε -predictor for z_i with success rate

$$\frac{1}{2} + \varepsilon = \frac{q(s+1)}{2m}.$$

(ii) Approximate the prediction power ε for $q \gg s$.

Exercise 3.3 (Distinguishers and predictors). We are given the following generator $g: \mathbb{B}^3 \to \mathbb{B}^6$:

x	g(x)	x	g(x)
000	001100	100	101000
001	001110	101	100101
010	010101	110	110010
011	011011	111	110011

The algorithm \mathcal{A} answers 1 if and only if at most four bits are 1, and 0 otherwise. The algorithm \mathcal{P} returns the second bit.

- (i) (3 points) Show: \mathcal{A} is a $\frac{7}{64}$ -distinguisher between the output distribution $X = g(U_3)$ of the generator and the uniform distribution U_6 on 6 bits.
- (ii) (3 points) Show: \mathcal{P} is a $\frac{1}{4}$ -predictor for the sixth bit under X.
- (iii) (+4 points) Find a predictor of higher quality and compute its prediction power and size.
- (iv) (3 points) Construct from \mathcal{P} a distinguisher \mathcal{A}' between X and U_6 . What is its distinguishing power?
- (v) (3 points) We want to visualize the hybrid distributions Y_2, Y_4, Y_6 as in the proof of Yao's theorem presented in class. To do this identify the generated bit strings from \mathbb{B}^6 with integers in $\{0, \ldots, 63\}$ and determine the probabilities of each string. Draw histograms of the three distributions. (You may do this by hand or use some small program.)
- (vi) (3 points) Construct from \mathcal{A} a predictor \mathcal{P}' for g with prediction power at least $7/(6 \cdot 64)$. Hint: Use the construction of Yao's theorem.
- (vii) (3 points) Compute the actual prediction power of \mathcal{P}' .