The art of cryptography: security, reductions, and group cryptography

Prof. Dr. Joachim von zur Gathen, Konstantin Ziegler

4. Assignment

(Due: Thursday, 3 May 2012, 13^{00})

Exercise 4.1 (Squares modulo primes). We are investigating the set of squares $\bmod p$, where p is some odd prime. As usual, we denote by \mathbb{Z}_{p}^{\times}the group of all invertible elements with multiplication $\bmod p$. Additionally define the order of $a \in \mathbb{Z}_{p}^{\times}$, in symbols ord a, to be the smallest positive integer e such that $a^{e}=1$ in \mathbb{Z}_{p}^{\times}.

$$
\square_{p}=\left\{b^{2}: b \in \mathbb{Z}_{p}\right\}
$$

and show the following properties.
(i) (4 points) The set \square_{p} is a subgroup of \mathbb{Z}_{p}^{\times}of size $(p-1) / 2$.
[Hint 1: The group \mathbb{Z}_{p}^{\times}is cyclic, that is there is an element $g \in \mathbb{Z}_{p}^{\times}$ such that every element $a \in \mathbb{Z}_{p}^{\times}$can be written as g^{α} for some positive integer α.
Hint 2: You may use the fact that ord $a^{k}=(\operatorname{ord} a) / \operatorname{gcd}(p-1, k)$ for every positive integer k.]
(ii) (4 points) We have $\square_{p}=\left\{b \in \mathbb{Z}_{p}^{\times}: b^{(p-1) / 2}=1\right\}$.
(iii) (3 points) For all $b \in \mathbb{Z}_{p}^{\times}$, we have $b^{(p-1) / 2} \in\{1,-1\}$.

Exercise 4.2 (Squares modulo composites). Let $p, q \in \mathbb{N}$ be two different odd prime numbers and $N=p \cdot q$.
(i) (4 points) Prove that $a \in \mathbb{Z}_{N}^{\times}$is square if and only if a is square in \mathbb{Z}_{p}^{\times} and \mathbb{Z}_{q}^{\times}. How many squares are there in \mathbb{Z}_{N}^{\times}?
(ii) (4 points) Given square roots of $a \in \mathbb{Z}_{N}^{\times}$in \mathbb{Z}_{p}^{\times}and \mathbb{Z}_{q}^{\times}, show how to compute a square root of a in \mathbb{Z}_{N}^{\times}.
(iii) (3 points) Let $p=3, q=11$, and $a=31$ with square root 1 in \mathbb{Z}_{3} and square root 8 in \mathbb{Z}_{11}. Implement (ii).

Exercise 4.3 (Foundations: quadratic residues). The Blum-Blum-Shub generator uses squaring modulo a BLum integer N to generate random bits. A BLum integer N is the product $p \cdot q$ of two odd primes p, q, both of which are congruent to $3 \bmod 4$.

To understand this we need some information about quadratic residues. What are the quadratic residues modulo N ? The Jacobi symbol and the law of quadratic reciprocity are helpful.

Theorem 4.4. Properties of the Jacobi symbol The Jacobi symbol ($\frac{a}{b}$) maps an integer a and an odd natural number b to $-1,0$ or +1 . If $b=p$ is prime, the Jacobi symbol is also called Legendre symbol and it is defined by

$$
\left(\frac{a}{p}\right)= \begin{cases}0, & \text { if } \operatorname{gcd}(a, p)=0 \\ +1, & \text { if a is a square modulo } p, \\ -1, & \text { otherwise }\end{cases}
$$

If $b=p_{1}^{e_{1}} \ldots p_{r}^{e_{r}}$ is the prime factorization, let

$$
\left(\frac{a}{b}\right)=\left(\frac{a}{p_{1}}\right)^{e_{1}} \ldots\left(\frac{a}{p_{r}}\right)^{e_{r}} .
$$

It holds that:
(i) $\left(\frac{a}{b}\right)=\left(\frac{a \bmod b}{b}\right) .\left(\frac{a}{b}\right)=0$ if and only if $\operatorname{gcd}(a, b) \neq 1$.
(ii) $\left(\frac{1}{b}\right)=+1,\left(\frac{a^{\prime} a}{b}\right)=\left(\frac{a^{\prime}}{b}\right) \cdot\left(\frac{a}{b}\right),\left(\frac{a}{b^{\prime} b}\right)=\left(\frac{a}{b^{\prime}}\right) \cdot\left(\frac{a}{b}\right)$.
(iii) $\left(\frac{-1}{b}\right)=(-1)^{\frac{b-1}{2}}$. This is +1 for $b \equiv 1(\bmod 4)$ and -1 for $b \equiv-1$ $(\bmod 4)$.
(iv) $\left(\frac{2}{b}\right)=(-1)^{\frac{b^{2}-1}{8}}$. This is +1 for $b \equiv \pm 1(\bmod 8)$ and -1 for $b \equiv \pm 3$ $(\bmod 8)$.
(v) The law of quadratic reciprocity states that, if a is also an odd natural number, then:

$$
\left(\frac{a}{b}\right)=(-1)^{\frac{a-1}{2} \frac{b-1}{2}}\left(\frac{b}{a}\right) .
$$

Thus the two Jacobi symbols differ in sign if and only if $a \equiv-1(\bmod 4)$ and $b \equiv-1(\bmod 4)$.

We can now quickly compute

$$
\left(\frac{5}{17}\right)=(-1)^{2 \cdot 8}\left(\frac{17}{5}\right)=\left(\frac{2}{5}\right)=(-1)^{3}=-1
$$

by (i), (iv), and (v).
(i) (4 points) Compute ($\frac{1001}{9907}$). Indicate which rule you applied in each step.
(ii) (+6 points) Develop an algorithm for computing the Jacobi symbol using polynomial time and implement it in a programming language of your choice. [Hint: It can be done in $O\left(n^{2}\right)$. The Euclidean algorithm uses time $O\left(n^{2}\right)$.]
(iii) (2 points) Which numbers have $\left(\frac{a}{N}\right)=1$? Compare with the two properties " a is a square modulo p " and " a is a square modulo q ".
(iv) (3 points) If $\left(\frac{x}{N}\right)=1$, then either x is a square and $-x$ is a nonsquare modulo N or vice versa. [Hint: Consider $\left(\frac{-1}{N}\right),\left(\frac{-1}{p}\right)$, and $\left(\frac{-1}{q}\right)$.]

