The art of cryptography: security, reductions, and group cryptography

PROF. DR. JOACHIM VON ZUR GATHEN, KONSTANTIN ZIEGLER

5. Assignment

(Due: Thursday, $10 \text{ May } 2012, 13^{00}$)

Exercise 5.1 (Distinguisher to test). Let N be a Blum integer and \mathcal{B} be an algorithm that on input $a \in \square_N \cup \boxtimes_N$ outputs " $a \in \square_N$ " or " $a \in \boxtimes_N$ ". Furthermore, for $a \in \square_N \cup \boxtimes_N$ chosen uniformly at random, the algorithm is correct with probability at least $1/2 + \varepsilon$. Consider the following derived algorithm \mathcal{C} .

Algorithm \mathcal{C} Weak squareness test from squareness distinguisher \mathcal{B}

Input $a \in \square_N \cup \boxtimes_N$.

Output " $a \in \square_N$ " or " $a \in \boxtimes_N$ ".

- 1. $r \stackrel{\text{\tiny ω}}{\longleftarrow} \mathbb{Z}_N^{\times}$.
- 2. $s \leftarrow \{0, 1\}$.
- 3. Compute $b \in (-1)^s r^2 a$ in \mathbb{Z}_N .
- 4. Call \mathcal{B} with input b, and let $t \in \{0,1\}$ be the output bit $t = (\mathcal{B}(b) = "b \in \square_N")$. [Thus t is 1 if and only if \mathcal{B} answers " $b \in \square_N$ ".]
- 5. If $s \oplus t = 1$ then return " $a \in \square_N$ " else return " $a \in \boxtimes_N$ ".
- (i) (2 points) Show that C answers correctly if and only if B answers correctly in step 4.
- (ii) (2 points) Show that for any input $a \in \square_N \cup \boxtimes_N$, the element b computed in step 3 is a uniform random element of $\square_N \cup \boxtimes_N$.
- (iii) (2 points) Conclude that the probability that C answers correctly is at least $1/2 + \varepsilon$ for any input.

Exercise 5.2 (Amplifying). Given a Monte-Carlo algorithm \mathcal{C} that answers correctly for any input with probability at least $1/2 + \varepsilon$. Consider a test \mathcal{T} which runs \mathcal{C} exactly k = 2m + 1 times independently and outputs the majority answer.

- (i) (2 points) Provide an exact expression for the probability that \mathcal{T} answers incorrectly.
- (ii) (2 points) Show that the expression in (i) is bounded above by $(1 4\varepsilon^2)^m/2$. [Hint: Let $s = 1/2 + \varepsilon$ and $t = 1/2 \varepsilon$ and use $t/s \le 1$.]
- (iii) (2 points) For ε equal to 0.01, 0.1, and 0.25 determine k such that \mathcal{T} is correct with probability at least 97%.

Exercise 5.3 (Blum-Blum-Shub Generator). Given the Blum integer $N = 1333 = 31 \cdot 43$.

- (i) (1 points) How many elements do \square_{1333} and \boxtimes_{1333} have?
- (ii) (4 points) Determine the sets \square_{1333} and \boxtimes_{1333} with a programming language of your choice and verify that squaring (modulo N) defines a bijection $\square_{1333} \rightarrow \square_{1333}$ and a bijection $\boxtimes_{1333} \rightarrow \square_{1333}$. Give a bijection $\square_{1333} \rightarrow \boxtimes_{1333}$.
- (iii) (2 points) Compute the the smallest primes p and q with $p \ge 2^9$, $q \ge 2^{11}$, and $p \equiv q \equiv 3 \mod 4$. Let $N = p \cdot q$ and $x_0 = 100001$.
- (iv) (5 points) Implement the Blum-Blum-Shub generator in a programming language of your choice and compute the first 50 bits with the generator.

Carry out a few statistical tests.

- (v) (2 points) For each possible possible pair (z_{2i}, z_{2i-1}) , $i = 1...2^{13}$, determine the number of times they occur. Compare with the theoretical values for a truly random generator.
- (vi) (3 points) What is the mean value and the standard deviation for 2^{13} bits. Compare with the theoretical values for a truly random generator.
- (vii) (+4 points) Plot 1 000 points (u, v), where the binary representation of u and v consists of 10 consecutive bits out of the produced series of bits each. Can any regularities be seen in the picture? Compare with a simple linear congruential generator: $x_i \leftarrow 313 \cdot x_{i-1} \mod 2053$, $z_i \leftarrow x_i \mod 1024$, where each value gives a coordinate of u or v.