
The art of cryptography: security,

reductions, and group

cryptography

Prof. Dr. Joachim von zur Gathen, Konstantin Ziegler

9. Assignment
(Due: Thursday, 14 June 2012, 1300)

Exercise 9.1 (generating (safe) primes). The expected runtime of an algorithm
that generates primes of a special form usually depends on the number of such
primes up to a given bound. In this exercise, we consider primes of the following
form.

P (x) = {all primes ≤ x},
P1(x) = {p ∈ P (x) : p = 2p0 + 1 for some prime p0},
P2(x) = {p ∈ P (x) : p = 2p0q0 + 1 for some primes p0, q0},

and denote their sizes by π(x), π1(x), and π2(x), respectively.

Assuming the Riemann hypothesis, we have the following approximation for the
density of the first set.

π(x)

x
=

Li(x)

x
+O

(

log x√
x

)

, (9.2)

where Li(x) =
∫ x

2
log t dt is the logarithmic integral.

[For the following tasks, use subroutines or libraries that provide fast primality
testing and evaluation of Li. These are widely available. Do not try to implement
them yourself!]

(i) (4 points) Consider the following naive algorithm to generate primes up
to size x.

Algorithm 1: Prime(x)

Input: integer x
Output: prime p ≤ x

1 p← 1
2 while p is not prime do

3 p←−− [1, . . . , x] uniformly
4 end

5 return p



Let x = 100 and run the algorithm H times (choose H reasonably depen-
ding on the speed of your primality test) and count the total number N of
loop executions. Use the quotient H/N as approximation for π(x)/x and
derive a value for the implicit constant C in (9.2) from that.

Repeat this experiment for increasing values of x and plot C(x).

(ii) (3+1 points) Let us now generate Sophie-Germain primes.

Algorithm 2: Prime1(x)

Input: integer x
Output: prime p ∈ P1(x)

1 p← 1
2 while p is not prime do

3 p0 ← Prime(x/2− 1)
4 p← 2p0 + 1

5 end

6 return p

Again, use the average number of loop executions as approximation to
πSG(x)/(x/2), the fraction of Sophie-Germain primes among all odd num-
bers ≤ x. Let us assume that this will be

π1(x)

x/2
=

2Li(x)

x
+O

(

log x√
x

)

.

Run this for increasing values of x and plot the development of the implicit
constant. Comment on your observation.

(iii) (3+2 points) Finally, let us generate primes of the form 2p0q0+1 for primes
p0, q0 with the following algorithm.

Algorithm 3: Prime2(x)

Input: integer x
Output: prime p ∈ P2(x)

1 p← 1
2 while p is not prime do

3 p0 ← Prime(x/2)
4 q0 ← 1
5 while q0 ≤ p0 do

6 q0 ← Prime(x/2p0 − 1)
7 end

8 p← 2p0q0 + 1

9 end

10 return p

Let us conjecture that the average number of loop executions will be

π2(x)

x/2
=

2Li(x)

x
+O

(

log x√
x

)

.

Do your experiments support or refute this conjecture? In the latter case,
can you come up with a conjecture supported by your experiments?

2


	9

