The art of cryptography: security,
reductions, and group

cryptography

PROF. DR. JOACHIM VON ZUR GATHEN, KONSTANTIN ZIEGLER

9. Assignment
(Due: Thursday, 14 June 2012, 13%9)

Exercise 9.1 (generating (safe) primes). The expected runtime of an algorithm
that generates primes of a special form usually depends on the number of such
primes up to a given bound. In this exercise, we consider primes of the following
form.

P(z) = {all primes < z},
Pi(x) ={p € P(x): p=2po + 1 for some prime pp},
Py(z) ={p € P(x): p=2ppqo + 1 for some primes poy, qo},

and denote their sizes by m(x), m1(z), and ma(z), respectively.

Assuming the Riemann hypothesis, we have the following approximation for the
density of the first set.

x x NZ

where Li(z) = f; log t dt is the logarithmic integral.

m(z) _ Lix) | <10g:v> | 02)

[For the following tasks, use subroutines or libraries that provide fast primality
testing and evaluation of Li. These are widely available. Do not try to implement
them yourself!]

(i) (4 points) Consider the following naive algorithm to generate primes up
to size x.

Algorithm 1: Prime(x)

Input: integer =
Output: prime p < x
1 p+1
2 while p is not prime do
3 ‘ p <2 [1,...,z] uniformly
4 end
5 return p

(iii)

Let = 100 and run the algorithm H times (choose H reasonably depen-
ding on the speed of your primality test) and count the total number N of
loop executions. Use the quotient H/N as approximation for m(x)/z and
derive a value for the implicit constant C in (9.2) from that.

Repeat this experiment for increasing values of and plot C(z).

(3+1 points) Let us now generate Sophie-Germain primes.

Algorithm 2: Prime; ()

Input: integer x

Output: prime p € P;(x)

p+1

while p is not prime do
po + Prime(x/2 — 1)
P 2po+1

end

return p

S Gk W N =

Again, use the average number of loop executions as approximation to
msc(x)/(x/2), the fraction of Sophie-Germain primes among all odd num-
bers < x. Let us assume that this will be

m1(x) _ 2Li(z) Lo log .
x/2 x VT

Run this for increasing values of x and plot the development of the implicit

constant. Comment on your observation.

(342 points) Finally, let us generate primes of the form 2pggo+1 for primes
Do, go with the following algorithm.

Algorithm 3: Primey(z)

Input: integer =
Output: prime p € P(x)
1p+1
2 while p is not prime do
3 po < Prime(z/2)

4 qo <1

5 while ¢y < py do

6 qo < Prime(x/2py — 1)
7 end

8 D4 2pogo +1

9 end

10 return p

Let us conjecture that the average number of loop executions will be
mo(x 2 Li(x log x
2(2) _ (z) +0 g)
x/2 x NG
Do your experiments support or refute this conjecture? In the latter case,
can you come up with a conjecture supported by your experiments?

	9

