The art of cryptography: security, reductions, and group cryptography

PROF. DR. JOACHIM VON ZUR GATHEN, KONSTANTIN ZIEGLER

9. Assignment

(Due: Thursday, 14 June 2012, 13^{00})

Exercise 9.1 (generating (safe) primes). The expected runtime of an algorithm that generates primes of a special form usually depends on the number of such primes up to a given bound. In this exercise, we consider primes of the following form.

 $P(x) = \{ \text{all primes} \le x \},\$ $P_1(x) = \{ p \in P(x) : p = 2p_0 + 1 \text{ for some prime } p_0 \},\$ $P_2(x) = \{ p \in P(x) : p = 2p_0q_0 + 1 \text{ for some primes } p_0, q_0 \},\$

and denote their sizes by $\pi(x)$, $\pi_1(x)$, and $\pi_2(x)$, respectively.

Assuming the Riemann hypothesis, we have the following approximation for the density of the first set.

$$\frac{\pi(x)}{x} = \frac{\operatorname{Li}(x)}{x} + O\left(\frac{\log x}{\sqrt{x}}\right),\tag{9.2}$$

where $\operatorname{Li}(x) = \int_2^x \log t \, dt$ is the logarithmic integral.

[For the following tasks, use subroutines or libraries that provide fast primality testing and evaluation of Li. These are widely available. Do not try to implement them yourself!]

(i) (4 points) Consider the following naive algorithm to generate primes up to size x.

Algorithm 1: $Prime(x)$
Input : integer x
Output : prime $p \leq x$
1 $p \leftarrow 1$
2 while p is not prime do
3 $p \xleftarrow{\textbf{BD}} [1, \dots, x]$ uniformly
4 end
5 return p

Let x = 100 and run the algorithm H times (choose H reasonably depending on the speed of your primality test) and count the total number N of loop executions. Use the quotient H/N as approximation for $\pi(x)/x$ and derive a value for the implicit constant C in (9.2) from that.

Repeat this experiment for increasing values of x and plot C(x).

(ii) (3+1 points) Let us now generate Sophie-Germain primes.

Algorithm 2: $Prime_1(x)$
Input: integer x
Output : prime $p \in P_1(x)$
1 $p \leftarrow 1$
2 while p is not prime do
3 $p_0 \leftarrow Prime(x/2 - 1)$
$ 4 p \leftarrow 2p_0 + 1$
5 end
6 return p

Again, use the average number of loop executions as approximation to $\pi_{SG}(x)/(x/2)$, the fraction of Sophie-Germain primes among all odd numbers $\leq x$. Let us assume that this will be

$$\frac{\pi_1(x)}{x/2} = \frac{2\operatorname{Li}(x)}{x} + O\left(\frac{\log x}{\sqrt{x}}\right).$$

Run this for increasing values of x and plot the development of the implicit constant. Comment on your observation.

(iii) (3+2 points) Finally, let us generate primes of the form $2p_0q_0+1$ for primes p_0, q_0 with the following algorithm.

	Algorithm 3: $Prime_2(x)$
	Input : integer x
	Output : prime $p \in P_2(x)$
1	$p \leftarrow 1$
2	while p is not prime do
3	$p_0 \leftarrow Prime(x/2)$
4	$q_0 \leftarrow 1$
5	while $q_0 \leq p_0 \operatorname{do}$
6	$q_0 \leftarrow Prime(x/2p_0 - 1)$
7	end
8	$p \leftarrow 2p_0q_0 + 1$
9	end
10	return p

Let us conjecture that the average number of loop executions will be

$$\frac{\pi_2(x)}{x/2} = \frac{2\operatorname{Li}(x)}{x} + O\left(\frac{\log x}{\sqrt{x}}\right).$$

Do your experiments support or refute this conjecture? In the latter case, can you come up with a conjecture supported by your experiments?