The art of cryptography: security, reductions, and group cryptography

Prof. Dr. Joachim von zur Gathen, Konstantin Ziegler

9. Assignment

(Due: Thursday, 14 June 2012, 13^{00})

Exercise 9.1 (generating (safe) primes). The expected runtime of an algorithm that generates primes of a special form usually depends on the number of such primes up to a given bound. In this exercise, we consider primes of the following form.

$$
\begin{aligned}
P(x) & =\{\text { all primes } \leq x\}, \\
P_{1}(x) & =\left\{p \in P(x): p=2 p_{0}+1 \text { for some prime } p_{0}\right\}, \\
P_{2}(x) & =\left\{p \in P(x): p=2 p_{0} q_{0}+1 \text { for some primes } p_{0}, q_{0}\right\},
\end{aligned}
$$

and denote their sizes by $\pi(x), \pi_{1}(x)$, and $\pi_{2}(x)$, respectively.
Assuming the Riemann hypothesis, we have the following approximation for the density of the first set.

$$
\begin{equation*}
\frac{\pi(x)}{x}=\frac{\operatorname{Li}(x)}{x}+O\left(\frac{\log x}{\sqrt{x}}\right), \tag{9.2}
\end{equation*}
$$

where $\operatorname{Li}(x)=\int_{2}^{x} \log t d t$ is the logarithmic integral.
[For the following tasks, use subroutines or libraries that provide fast primality testing and evaluation of Li. These are widely available. Do not try to implement them yourself!
(i) (4 points) Consider the following naive algorithm to generate primes up to size x.

```
Algorithm 1: Prime \((x)\)
    Input: integer \(x\)
    Output: prime \(p \leq x\)
    \(p \leftarrow 1\)
    while \(p\) is not prime do
        \(p \longleftarrow[1, \ldots, x]\) uniformly
    end
    return \(p\)
```

Let $x=100$ and run the algorithm H times (choose H reasonably depending on the speed of your primality test) and count the total number N of loop executions. Use the quotient H / N as approximation for $\pi(x) / x$ and derive a value for the implicit constant C in (9.2) from that.
Repeat this experiment for increasing values of x and plot $C(x)$.
(ii) (3+1 points) Let us now generate Sophie-Germain primes.

```
Algorithm 2: \(\operatorname{Prime}_{1}(x)\)
    Input: integer \(x\)
    Output: prime \(p \in P_{1}(x)\)
    \(p \leftarrow 1\)
    while \(p\) is not prime do
        \(p_{0} \leftarrow \operatorname{Prime}(x / 2-1)\)
        \(p \leftarrow 2 p_{0}+1\)
    end
    return \(p\)
```

Again, use the average number of loop executions as approximation to $\pi_{S G}(x) /(x / 2)$, the fraction of Sophie-Germain primes among all odd numbers $\leq x$. Let us assume that this will be

$$
\frac{\pi_{1}(x)}{x / 2}=\frac{2 \operatorname{Li}(x)}{x}+O\left(\frac{\log x}{\sqrt{x}}\right)
$$

Run this for increasing values of x and plot the development of the implicit constant. Comment on your observation.
(iii) $\left(3+2\right.$ points) Finally, let us generate primes of the form $2 p_{0} q_{0}+1$ for primes p_{0}, q_{0} with the following algorithm.

```
Algorithm 3: \(\mathrm{Prime}_{2}(x)\)
    Input: integer \(x\)
    Output: prime \(p \in P_{2}(x)\)
    \(p \leftarrow 1\)
    while \(p\) is not prime do
        \(p_{0} \leftarrow \operatorname{Prime}(x / 2)\)
        \(q_{0} \leftarrow 1\)
        while \(q_{0} \leq p_{0}\) do
            \(q_{0} \leftarrow \operatorname{Prime}\left(x / 2 p_{0}-1\right)\)
        end
        \(p \leftarrow 2 p_{0} q_{0}+1\)
    end
    return \(p\)
```

Let us conjecture that the average number of loop executions will be

$$
\frac{\pi_{2}(x)}{x / 2}=\frac{2 \operatorname{Li}(x)}{x}+O\left(\frac{\log x}{\sqrt{x}}\right)
$$

Do your experiments support or refute this conjecture? In the latter case, can you come up with a conjecture supported by your experiments?

