
Advanced cryptography: Pairing-based cryptography
winter term 2012/13

DANIEL LOEBENBERGER AND MICHAEL NÜSKEN

3. Exercise sheet
Hand in solutions until Monday, 12 November 2012, 23:59:59

Exercise 3.1 (Hands on: Miller). (20+3 points)

Implement Miller’s algorithm computing fP (Q1)
fP (Q2)

where div(fP ) = ℓ[P + R] − 20
ℓ[P ] − ℓ[R] + [O] given P,R,Q1, Q2 ∈ E and the desired index ℓ in a pro-
gramming language/computer algebra system of your choice. Hint: Employ
a system that can handle finite field and polynomial arithmetic. Then, first im-
plement elliptic curve arithmetic (or find an appropriate library for that task)
and afterwards realize Miller’s algorithm.

Bonus task: Show (on paper) that running the algorithm is only a constant +3
factor slower than a scalar multiplication.

Exercise 3.2 (Divisors of functions). (10+3 points)

(i) Consider the function f : P1
C → P

1
C, x 7→ (x−1)2(x−5)

x3(x−2)2(x−3)2 , where P
1
C =

C ∪ {∞}.

(a) Compute the value f(∞). If f has a zero or a pole compute its 2
multiplicity. Hint: Consider f(1/x) and evaluate at x = 0.

(b) Compute div(f). 1

(ii) Consider now the function g : R → R, x 7→ x2 + 1.

(a) Compute div(g). Hint: It is not zero. +2

(b) What is the divisor of g when we replace R by P
1
R? +1

(iii) You are given the divisor D = [1]−2[2]+3[3]−4[4]+2[∞]. Find a function 2
h : P1

C → P
1
C, x 7→ h(x) with div(h) = D.

(iv) Explain why finding functions on the curve E with a predescribed divi- 5
sor may be more difficult than over P1

C.



2 Daniel Loebenberger and Michael Nüsken

Exercise 3.3 (Security estimate). (4+6 points)

The ElGamal signature scheme works over some publicly known group of (of-
ten prime) order ℓ, where ℓ has length n. In many cases this is a subgroup of
some Z×

p with another (larger) prime p; then ℓ|(p− 1). However, it is necessary
for its security that it is difficult to compute a discrete logarithm in the group
and also, if applicable, in the surrounding group Z

×

p . The best known dis-
crete logarithm algorithms achieve the following (heuristic, expected) running
times:

method year time for a group size of n-bit
brute force (any group) −∞ O∼ (2n)

Baby-step Giant-step (any group) 1971 O∼
(

2n/2
)

Pollard’s ̺ method (any group) 1978 O
(

n22n/2
)

Pohlig-Hellman (any group) 1978 O∼
(

2n/2
)

Index-Calculus for Z×
p 1986 2(

√
2+o(1))n1/2 log1/2

2
n

Number-field sieve for Z×
p 1990 2((64/9)

1/3+o(1))n1/3 log2/3
2

n

It is not correct to think of o(1) as zero, but for the following rough estimates
just do it. Estimate the time that would be needed to find a discrete logarithm
in a group whose order has n-bits assuming the (strongest of the) above esti-
mates are accurate with o(1) = 0 (which is wrong in practice!)

(i) for n = 1024 (standard size),+1
(ii) for n = 2048 (as required for Document Signer CA),+1

(iii) for n = 3072 (as required for Country Signing CA).
+1

Repeat the estimate assuming that for the given group only Pollard’s ̺ method
is available, for example in case the group is a ℓ-element subgroup of Z×

p or an
elliptic curve,

(iv) for n = 160,+1
(v) for n = 200,+1

(vi) for n = 240.
+1

In April 2001 Reynald Lercier reported (http://perso.univ-rennes1.
fr/reynald.lercier/file/nmbrJL01a.html) that they can solve a dis-
crete logarithm problem modulo a 397-bit prime p within 10 weeks on a 525MHz
computer.

(vii) Which bit size for the prime p is necessary to ensure that they cannot4
solve the DLP problem in Z

×

p given —say— 10’000 10GHz computers
and 1 year (disregarding memory requirements).

[Note: The record for computing discrete logs in F
×

2n
lies at n = 613, see An-

toine Joux http://perso.univ-rennes1.fr/reynald.lercier/file/
nmbrJL05a.html.]


