In cryptography we typically need the size of an elliptic curve to implement our primitives. The following exercise shall give you a tiny little more insight into this business.

Exercise 4.1. (10 points)
Analogously to the lecture, describe detailed the differences between classical signature schemes and ID-based signature schemes.

Exercise 4.2 (Count it!). (15 points)
Let \(E : y^2 = x^3 + ax + b \) be an elliptic curve defined over \(\mathbb{F}_q \) with characteristic neither 2 nor 3. Denote by \(E(\mathbb{F}_q) \) the set of \(\mathbb{F}_q \)-rational points on the curve \(E \) and write \(\#E(\mathbb{F}_q) \) for the number of \(\mathbb{F}_q \)-rational points on the curve.

(i) Show that \(\#E(\mathbb{F}_q) \leq 2q + 1 \).
(ii) Show that we always have \(\#E(\mathbb{F}_q) = \infty \).
(iii) Consider the (generalized) Legendre symbol
\[
\left(\frac{a}{\mathbb{F}_q} \right) := \begin{cases}
0 & \text{if } a = 0, \\
1 & \text{if there is } b \in \mathbb{F}_q \text{ with } b^2 = a, \\
-1 & \text{if there is no } b \in \mathbb{F}_q \text{ with } b^2 = a.
\end{cases}
\]
Prove that \(\#E(\mathbb{F}_q) = q + 1 + \sum_{x \in \mathbb{F}_q} \left(\frac{x^3 + ax + b}{\mathbb{F}_q} \right) \).
(iv) Consider the curve \(E : x^3 + x + 1 \) over \(\mathbb{F}_5 \). Compute \(\#E(\mathbb{F}_5) \) using the formula from (iii).
(v) Consider the same situation over \(\mathbb{F}_5^2 = \mathbb{F}_5[x]/(x^2 + x + 1) \). Compute \(\#E(\mathbb{F}_5^2) \) using the formula from (iii).

For the next exercise you need the following

Theorem (Group structure of an elliptic curve). Let \(E \) be an elliptic curve over \(\mathbb{F}_q \). Then
\[
E(\mathbb{F}_q) \cong \mathbb{Z}_n \text{ or } E(\mathbb{F}_q) \cong \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}
\]
for some integer \(n \geq 1 \), or for integers \(n_1, n_2 \geq 1 \) with \(n_1 \) dividing \(n_2 \).
Exercise 4.3 (Group order and structure). (0+10 points)

Consider \(q = 73 \).

(i) Determine the Hasse interval of possible group sizes \(\#E(\mathbb{F}_q) \).

(ii) Consider the elliptic curve \(E_1 : y^2 = x^3 - 2x + 2 \) defined over \(\mathbb{F}_q \). The point \((-36, 24)\) on \(E_1 \) has order 23. Determine \(\#E_1(\mathbb{F}_q) \) and the possible group structure of \(E_1 \).

(iii) Consider the elliptic curve \(E_2 : y^2 = x^3 - 2x + 1 \) defined over \(\mathbb{F}_q \). The point \((20, 2)\) has order 5 and the point \((-23, -12)\) has order 8. Determine \(\#E_2(\mathbb{F}_q) \) and the possible group structure of \(E_2 \).

(iv) Consider the elliptic curve \(E_3 : y^2 = x^3 - 3x + 5 \) defined over \(\mathbb{F}_q \). The point \((25, 15)\) has order 9 and the point \((17, -7)\) has order 15. Determine \(\#E_3(\mathbb{F}_q) \) and the possible group structure of \(E_3 \).

(v) Consider the elliptic curve \(E_4 : y^2 = x^3 + 16 \) defined over \(\mathbb{F}_q \). Both points \(P := (-5, 16) \) and \(Q := (-35, -24) \) have order 9. Determine \(\#E_4(\mathbb{F}_q) \) and conclude the group structure. Hint: Show that there is no \(k \) such that \(Q = kP \) or \(3Q = kP \) and use Hasse.

Exercise 4.4 (Distribution of sizes of elliptic curves). (0+8 points)

In this exercise we will explore how the sizes of elliptic curves over some particular small finite field are distributed.

(i) Write a small program that counts the number of points of all elliptic curves in Weierstrass form over \(\mathbb{F}_{11} \). To do so, generate all possible equations of the form \(y^2 = x^3 + ax + b \) with \(a, b \in \mathbb{F}_{11} \) and count for each choice of \(a \) and \(b \) using for example the formula from exercise 7.1 (iii) how many pairs \((x, y) \in \mathbb{F}_{11}^2 \) exist that fulfill that equation. Do not forget to count the point at infinity!

(ii) Nicely plot the statistics and compare your results to Hasse’s bound \(|\#E(\mathbb{F}_q) - q - 1| \leq 2\sqrt{q} \).

(iii) Explain the symmetry of the plot.