Advanced cryptography: Pairing-based cryptography winter term 2012/13

Daniel Loebenberger and Michael Nüsken

5. Exercise sheet
 Hand in solutions until Monday, 26 November 2012, 23:59:59

Exercise 5.1 (Some reductions).

Consider the setup from the lecture: We have two groups G_{1} and G_{3} with $\# G_{1}=\# G_{3}=\ell$ prime and a pairing $e: G_{1} \times G_{1} \rightarrow G_{3}$.
(i) Show that $\mathrm{DBDH} \leq \mathrm{DDH}_{G_{3}}$.
(ii) Show that $\mathrm{DL}_{G_{3}} \equiv\left(\mathrm{DL}_{G_{1}}\right.$ and GTI).

Exercise 5.2 (Man-in-the-middle).

Consider the Joux's three party key-exchange protocol. Show that the proto- 7 col is vulnerable to man-in-the-middle attacks, i.e. describe how a malicious fourth party can modify the protocol to be afterwards able to intercept all communication.

Exercise 5.3 (Notions).

Explain why we call Smart's key agreement protocol "authenticated".

Exercise 5.4 (A simple proof).
Show that the forward-security of Smart's authenticated key agreement proto- 4 col can be reduced to the BDH problem and vice versa.

