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1. Classical Cryptography

exe:shift-cipher Exercise 1 (Shift-Cipher). A secret message M is encrypted with the Shift-
Cipher using a secret key K.

AZ = AlphabeticStrings()

S = ShiftCryptosystem(AZ)
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M = AZ.encoding(’<secret message>’)

K = S.random_key()

C = S.enciphering(K, M)

The resulting ciphertext C is KYVIVRIVRCJFCVKKVIJFWYZJKFTZTVIFRJNVCC

RJKFYZJZEKZDRKVJFEGIZMRKVRWWRZIJREUZEKYVCRKKVIZWYVREPKYZEXTFEWZ

UVEKZRCKFJRPYVNIFKVZKZETZGYVIKYRKZJSPJFTYREXZEXKYVFIUVIFWKYVCVK

KVIJFWKYVRCGYRSVKKYRKEFKRNFIUTFLCUSVDRUVFLKZWREPFEVNZJYVJKFUVTZ

GYVIKYVJVREUXVKRKKYVZIDVREZEXYVDLJKJLSJKZKLKVKYVWFLIKYCVKKVIFWK

YVRCGYRSVKERDVCPUWFIRREUJFNZKYKYVFKYVIJ.

(a) Retrieve the original message M through exhaustive search.

(b) Can you also recover the secret key K?

Hint: For a candidate key k, you obtain the decryption of C with k using

S.deciphering(k, C)

for k in range(26):

k, S.deciphering(k, C)

The messages is taken from De Vita Caesarum, Divus Iulius by Suetonius
(c. 69 – after 122 AD). It describes Caesar’s cipher.

exe:key-space Exercise 2 (Exhaustive search of the key space). What is the size of the
key space for the following ciphers.

(a) Shift-Cipher

(b) Substitution-Cipher

(c) Affine-Cipher

(d) Vigènere Cipher (with block length m)

(e) Hill Cipher (with block length m)

(f) Permutation Cipher (with block length m)
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Which of them is vulnerable to a break by exhaustive search on a common
personal computer?

exe:index-of-coincidence Exercise 3 (coin flips). What is the index of coincidence for a sequence of
coin flips produced by a

(a) fair (50/50),

(b) slightly biased (51/49),

(c) heavily biased (90/10) coin?

Friedman provides an index-of-coincidence of - 0.0667 :: English - 0.0738 ::
Italian - 0.0762 :: German - 0.0775 :: Spanish - 0.0778 :: French

William F. Friedman, Military Cryptanalysis, Part III, 1939 (revisions by
Lambros D. Callimahos as Military Cryptanalytics – published Part I and
II, classified Part III)

exe:substitution-cipher Exercise 4 (Substitution-Cipher). A secret message M is encrypted with
the Substitution-Cipher using a secret key K.

AZ = AlphabeticStrings()

S = SubstitutionCryptosystem(AZ)

M = AZ.encoding(’<secret message>’)

K = S.random_key()

C = S.enciphering(K, M)

The resulting ciphertext C is XVJIRIXJHHMIXNJZKOEXPEOLLRPAUWXHOXVJHO

XPEOLLRPUFJEPZVJKONLJPXHMIXUWXNJKJQMPKJFXWNJIJEKJXOUFPXHMIXNJON

LJXWAOLLPUXWXVJVOUFIWAXVJJUJHRTPXVWMXPUEWUYJUPJUEJPXISJRHMIXNJE

WHHMUPEONLJOUFKJXOPUONLJTPXVWMXXVJVJLZWATKPXXJUUWXJIOUFEVOUDJON

LJWKHWFPAPONLJOXXVJTPLLWAXVJEWKKJIZWUFJUXIPXHMIXNJOZZLPEONLJXWX

JLJDKOZVPEEWKKJIZWUFJUEJPXHMIXNJZWKXONLJOUFPXIMIODJOUFAMUEXPWUH

MIXUWXKJQMPKJXVJEWUEWMKIJWAIJYJKOLZJWZLJAPUOLLRPXPIUJEJIIOKRDPY

JUXVJEPKEMHIXOUEJIXVOXEWHHOUFPXIOZZLPEOXPWUXVOXXVJIRIXJHNJJOIRX

WMIJKJQMPKPUDUJPXVJKHJUXOLIXKOPUUWKXVJSUWTLJFDJWAOLWUDIJKPJIWAK

MLJIXWWNIJKYJ. The frequency distribution of the ciphertext is given by

C.frequency_distribution()
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and you can obtain the decryption of the text for a guessed key k by

k = AZ("DEFGHIJKLMNOPQRSTUVWXYZABC") # Caesar’s cipher

S.deciphering(k, C)

(a) Retrieve the original message M by comparing the frequency distribu-
tion of the ciphertext with the frequency distribution of an “average”
english text given by This is the frequency distribution determined by
Beker and Piper (1982). You can compare this with the alternative by
Lewand (2000).

(b) Can you also recover the secret key K completely?

include discussion of bi-

grams

include discussion of bi-

grams

This is from the English translation of Auguste Kerckhoffs’s, La cryptographie
militaire, Journal des sciences militaires, vol. IX, pp. 5–38, Jan. 1883, pp.
161–191, Feb. 1883.

exe:affine-cipher Exercise 5 (Affine cipher). We want to encrypt a message x ∈ Z26 with a
key (k0, k1) ∈ Z

2
26 using the following encryption algorithm enc.

1 Algorithm: enc

Input: x ∈ Z26, (k0, k1) ∈ Z
2
26

Output: y ∈ Z26

2 return y ← k1 · x+ k0 in Z26

(a) (4 points) Specify a keygeneration algorithm keygen (Input: none;
Output: (k0, k1) ∈ Z

2
26) and a decryption algorithm dec (Input: y ∈

Z26, (k0, k1) ∈ Z
2
26; Output: x∗ ∈ Z26) such that the resulting affine

cipher is

• correct, and

• the keyspace is maximal.

(b) (3 points) What is the size of the keyspace?

item:1 (c) (4 points) Recover the key (k0, k1) for an instance of the affine cipher
which produces the following message-ciphertext pairs. Use as few
pairs as possible.
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x 0 1 2 3 4 5 6 7 8 9 10 11 12 13

enc(k0,k1)(x) 13 6 25 18 11 4 23 16 9 2 21 14 7 0

x 14 15 16 17 18 19 20 21 22 23 24 25

enc(k0,k1)(x) 19 12 5 24 17 10 3 22 15 8 1 20

(d) (3 points) The attack of (c) is a chosen-message-attack. What is the
expected number of randomly chosen known message-ciphertext pairs
that a successful key recovery requires?

(e) (4 points) Shannon (1949) suggested to combine cryptosystems as
“product ciphers” to obtain systems with higher security. Evaluate the
security of the product of two affine ciphers.

exe:vigenere-cipher Exercise 6 (Vigenère Cipher). A secret message M is encrypted with the
Vigenère Cipher using a secret key K of length 6.

AZ = AlphabeticStrings()

blocklength = 6

S = VigenereCryptosystem(AZ, blocklength)

M = AZ.encoding(’<secret message>’)

K = S.random_key()

C = S.enciphering(K, M)

The resulting ciphertext C is VYCEKCDCCBLCHTPNIHQXPPIVARLSLSEICRRGAJ

RTFGHLPCBGJRLXGHGICHMWPXYEIZKTYIBCPFDRHAOLLXVOVZMCMVGFPNBBVYGHI

ORVPPMVGFPNHTUVAGXQAJWHMSOJGHWSXVJDISFKFTTDRIMPVVKJMCTHJVMGXHKT

YAESXVJPGRKJGCMSPUCSMCEFKEESOVLIMVGKPTTHOVLIYCWEBXGGVRLSTFFNMGD

GQEAGRDVFEGTDJPRWXFGRBTMOKCCSLHWUWXLACUCDYHJVKPGMUKYCWOTURNISUF

DRHRGJYCWQKGFTKGCEBDYHJVUPRGQWZGXOMZLVMVGDUTPWNCZTFCTVADGQGILTW

KKKFIASIVLTKONDYIASORRXVONJRGNQVLPTTBFGPDISTKGTLCHJCRKSEPQNLHGD

QIASVICPMAGERXLZKDGIXRKEATKHCZLLTMUWGGLHVYCGXOTVRWKSGXCCXFCCRNI

SUFDHXQTVANLMUKCBVCPTCPEAGERHRGVVKHBBECSSBBIJSRAAGKFDWGCJGCOWUZ

ZAXWPBADGQGRJXGUCDCHLOIVGCTBKELDVSPKRTQHQIGCTTCBCRHJGIGCZQTPNIH

UTRKDKCVYCGFSVYMSLWPNFXVVVYCTQWUKCCVSQWRWXAGJQPZSKJADGQGRJTWTTF

KIASGECBRDTZTPVMUPQIXAUWMGXLCDNAXGRVCRAWPMCGLWQEGCPVKTFHISEZYAX

EWZNBXBVZQGXEWZPTWHQICRHJGIRWXAGJQPZSVISTLSEICRRGAJRTFGYYCGXHJV

KTTBKEEDYHJVKTLGCXCXLQQEATTZGUZNVWRYCGVCFVCIVONKFDNUJZRHXLKJRTG

QGZQCHHJZBSXBCEBIASGECBRWURQHNAGURDAOXVYCRGRVAXTZGHSXIAGERCXQGJ
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QPKMVFGCMSTTCEMOPUPTVCTURWXHTRLHFWVKCSLWIEYAPSEFLHBRGIMCEMVYCIA

WTURNISEFLRXONDCCMGAJRTFOTVNGBACIGARORJWRACNFEXVONGPDUZGDYCWDTZ

TPVMUPQIXAURRTVVPFJDZWERJDGSUVADGRNPRWXHTVYIFSPKGHEWOZRTWHQKFTV

OUVMUWWUTPTMSKEDDKACKGDGKJVPTMVGDCHLOIVRDUSGEAXIVGICSVCPJGHMGQW

YHXEWVLRXCHUGHVFGKCHRADFJHXOEYAWHGGEDGHACWGCBHGJCIMVGJCHRADFJHF

OASCAXHVVPHBBCCYCZICXCLHFFJMUTZCEEJTUGRKEEWVLBTESXVJHHTCHSPGHKQ

CSLDGVAWHFXZBTHGKXLPESVTZJMHJVKPBBGDNWTGKJYCWHJZLZBBIYYHUSGEADG

QGILTWKKKFIASERQTHTNVRIXFUKFTIORVPXLRKMGSXRKERDMVTVCETFVJRWXACZ

LGXGWCRHPWNCLDPPGSPXXTNPQJFACIGOXRVYCUBFUKNPKHFVYALKKKFIASDRQXV

ACKFTFOVZAPEGVISRMITVMULSEICRRGAJRTFGCJGCVCODSCBQCKGDGHJVMGRONR

LVNOIVGHVCPJGSXFGURDUSTVNGXGGERTWPARQIHQJRQIBQRIMRXGUNFXVVRIMSN

QGJYSBGEICIXGGHSTGQGFDHRADFJHBBCTADKRCEATPWVYQDFSUPQIXAQWNGHPCS

GABHKVQPLGQTGPMSFNGIAONRLVNOIVRWXFGZQPVSTKYXGDCIYBXHGIBLAWEYUTV

ONCRWXFGUSCWOPTWDYHJVJPGUWRETWAGRQJKSUZLPLSPJCWHKOLAWTHGORXGHJV

JPGUWRETVOPSCGXRWTCSBBNVLVMVYZRWHIVCMHBBIRLNBBHFPBTHKFLPLOUZKEE

SGOYBIZGJGCVSWRJLTMUWMAECYJOXGSPXJXLVYFPSLHJVSBTMDVMBBHVVBLBHJF

SIECUJADGGKUCGTPNVPTWIEKGDGGCICEHGUZZAXWPVLVEWUYBJXHQKFTLHCKGHM

WERJHMFWTRJKSQWRWXZCEEJTUGKFTAWIYDGXEWVLRBSUFDRXFVRGCESVKCGLCTN

MGWGGKAGXRWEBPGQAZQDYQGERGTZKDNDKHCEATBBVYCHMIFPMULSEICRRGAJRTF

GCJCRKSEPQNLHGDGHWSHZLTWODJRGTQVCWPLOUVRDYHTRLHYCTDYIBCPJMUHBGJ

NPVSVYCHXHQWNDLGKSJTFSUJYVXGKERDTGGTMCWGRRATMVGJCIHTRFQHBPNVAGR

DVFEGTAUVYRADCIRXVINRPIKOPJDDKACKGDGCHKFTLSVTMGKSUGMCWGVFCCVWRY

CGBBINGIAORRPIBQWCYGDSAKFTMFCEQUHFORRXHBURPTLIRGMHXRTVTTKGKSJTG

CPJGCZINRPHHHJRRJGWSLCSXQKGFTKWPXGHICUJGQESYYCCMVGBCNBGMEMLGSCT

FZXMCEBIASTVDDKSGRAWMFCEQUHFORRXHBKJYHLIOVBIHVCMCPGORIGDKWRIMQT

PKCGIROUJMRBOVVBLBHJZRIASRIMQTPKCGIRCHTFDHGKEEIAOVBCNLWOZJPKZAV

YRADQJQXUZGDCHLOIVGHTGULKTWHQYYKXOPRQHHQKRRTWORIGDKWRIMQTPKCGIR

RGKCGFWPVBQRHJVSCWSTCWXGUUKMRAOUKGRIFQTCHLHJVQTIFQSYQBZKKGTLTQI

RWXJCIGDNGMVWHTBFDCHLOIVQPKSCTRJTZNPRWXSPVKNVFAGRPGONPQILORIGDK

WRIMQTPKCGIBSUWMGMVGTFDBQGJGCJIGJRXHBCEBGXDTVQTGHJZQPIFKFPXDBQN

JTWUGFDIASUZRJTHKFLIHIUVRWXGAJRTFOMVWXLTKIQILSNVAIXRCEBHXBVKMIA

STVATBJKEEEHWPKRWXQJFGRXCHRITRRGKCGFWPVQPIOTKGRNZCIRGTBUWMGFOVZ

MCBBVYCHXHHFPBBBIKFTLMUKCBMVGEYBXGURETBGUVJTVHGUYCWHJVNPKHKTSAT

FVIYCLTQIKPMWQEADKFGJNDGRKEEIHHJVQTESEKCSDSARNEEWGURDMVKJKTLGCX

CIHDTFBJVSCTPNIHQXPPFHJZQRKMRKMVKOOZQIKOPJKXMHGURDMVGICRXWXZLVI

CKERQROEYYCGSNRLSFOASCXGHGIATIHGUZNMVGVLTFMCKRWXFGTCXOWPXCCWHJV

GCOSTJCDYHJVNPKHKTSATFVIYCLTQIKPMWQEGHTDRCGTWHQKFTVFAGRDZFCDRDK

SEFTTKHJVMGBUKEYAFSUJYVXWHKFTXBGDWXGHGIATIHUKFTVFAGRDZFCDFTVOPT

YAVINRRTYFQDGIMVGRNDLHGIGDKWRIMQTPKCGIBSUFDIASXRPXHIUGMHLWDCCBX

GURETLOPUITRGYYGRAAKXFIAOXVNGHRWTCSMVKJAGRDVFEGTAVYGHLSVFDPICUK

CGBCTZNGHPCSGABHKVQRHBUKGINHGJFXLYPFUAXRIVMUMVGBCNTBFDCHLOIVYUM

6

Draft (2–all) – March 19, 2013 – 23:16



STKFTBBVVPRXDVZMCDBQNJTWUGZQIAIUZBTGHKWGTWKKKFPLSVFDEKCRFQXMWQE

QWTJKEEPLGQTGPMSFGPDUODZJXMWGJRWXQCCAJEOVZMCHTVYCPICUKCGBCTZNGH

PCSGABHKVQXLHJVETGSTRJXSSFGPDUZGDMUVFAGRPGONPQXL.

(a) Retrieve the original message M .

(b) Can you also recover the secret key K?

Hint: You can address all letters in the ciphertext at positions congruent
i mod 6 for 0 ≤ i < 6 and its frequency distribution by

for i in range(6):

B = C[i::6]

B.frequency_distribution()

Shannon (1949), Communication Theory of Secrecy Systems

exe:random-matrix Exercise 7 (a random matrix is invertible). No exercise yet.

Conjecture for binary matrices. Verify asymptotically.

Formulate an analogue conjecture over Fq and test it.

exe:hill-cipher Exercise 8 (Hill cipher). No exercise yet, just the Sage code for experiments

blocklength = 6

G = SymmetricGroup(blocklength*blocklength)

S = [i+5*j for i in range(1,6) for j in range(5)]

G(S) # cycle notation

exe:product-cipher Exercise 9 (product cipher). TODO

Build a product-cipher from classical crypto. Does that help? (No.) Why
not? (Linearity!)

What if you employ the non-liner Substitution Cipher?

Why does the product-cipher design strengthen AES? Non-linear SubBytes.

exe:great-expectations Exercise 10 (great expectations). (a) (expected time ’til occurrence) The
least common letter in the English alphabet is ’z’ with pz = 0.074.
What is the expected length of text (just letters, no spaces) until ’z’
occurred at least once? What is the expected length until each letter
occurred once?
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(b) (When does the law of big numbers begin?) For which length of text do
you expect ’e’ to be the most common letter with probability at least
95%? For which length do you expect ’t’ to be the 2nd most common
with probabililty at least 95%? Run experiments.

(c) (distinguishing “close” frequencies) The last exercise is about identify-
ing the “dominant” elements. But, how hard does it get, if the frequen-
cies are close to each other? Instead of investigating letters, with small
frequencies we turn to a more practical example.

Let ε > 0, f = 0.5+ε and m = 0.5−ε be the proportion of women and
men in a large population, respectively. Assume a person is sampled
according to this distribution. What is your best guess for its gender
and what is your probability of success. Assume now, you are given
a database with clear (distinct) family names and encrypted gender
for each entry. How large does the database have to be (depending
on ε) such that the most common entry is the encryption of ’f’ with
probability at least 95%? Run experiments.

??

This is the Coupon collector’s problem. For uniform letter distribution this
would be n ·Hn, where Hn = 1/1+1/2+1/3+ · · ·+1/n is the n-th Harmonic
number. Asymptotically, this is

nHn = n ln(n) + γ(n) + 1/2 + o(1) ≈ 100(forn = 26)
eq:1

2. AES

Exercise 11 (The modified last round of AES). (7 points)exe:aes-invert

The encryption of a message x under 10-round AES with a key k can be
described as follows.

x = aes.add_round_key(x, k)

for i in range(1,11):

x = aes.sub_bytes(x)
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x = aes.shift_rows(x)

if i < 10:

x = aes.mix_columns(x)

k = aes.key_schedule(k,i) # determine round-key

x = aes.add_round_key(x,k)

y = x

Show that the decryption can be achieved with the same structure. In other
words, make suitable changes to the key-schedule, the S-box, the shifting
operation on the rows, and the mixing operation on the columns to decrypt
y using the key k with the same sequence of (modified) operations.

SPN-generalization, Stin-

son 3.1

SPN-generalization, Stin-

son 3.1

Feistel, Stinson 3.2Feistel, Stinson 3.2

exe:aes-implement Exercise 12 (your implementation of baby-AES). (a) Turn the pseudo-code
of the previous exercise into a function enc(M,K, i) which computes
the state of AES after round i of our 3-round AES given message M
and key K. In other words enc(M,K, 0) should return M + K0 and
enc(M,K, 3) should return aes(M,K).

(b) For later use, write a function declast(C,Kn) which decrypts the last
round, i.e. declast(C,Kn) should return the state before entering the
last round, given the ciphertext C and the last round-key Kn.

Hint: The inverse of MixColumns and Shiftrows are particularly easy
to describe for our baby-AES. Hint: What happens of you execute each
of the operations twice?

Hint: The inverse of an S-box is again an S-box. You can specify an
S-box in Sage explicitly by

mySbox = mq.SBox(14, 13, 4, 12, 3, 2, 0, 6, 15, 8, 7, 1, 11, 9, 5, 10)

3. Differential Cryptanalysis

exe:diff-attack Exercise 13 (Differential cryptanalysis). In the lecture, we found a differ-
ential trail through the first two rounds of baby-AES with propagation ratio
1/64. For the corresponding differential attack, we required 192 pairs of
plaintext-ciphertext pairs with corresponding input difference.
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For this exercise, the S-box of baby-AES is replaced with the following new
4-bit S-box.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) E 2 1 3 D 9 0 6 F 4 5 A 8 C 7 B

We call this the new baby-AES.

cor:1 (a) (3 points) Compute the output difference distribution for input xor
x′ = 0001. [Hint: Eight xors suffice.]

cor:2 (b) (4 points) The difference distribution table of the new S-box is dis-
played below, but the first three rows are missing. Complete the table.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3 0 2 0 4 0 2 0 0 0 2 0 4 0 2 0 0

4 0 4 2 2 0 2 0 2 2 0 0 2 0 0 0 0

5 0 0 0 4 0 0 0 4 0 0 0 0 2 2 2 2

6 0 0 0 0 2 0 2 0 2 0 2 0 2 2 2 2

7 0 0 4 2 2 0 0 0 4 2 0 0 0 0 2 0

8 0 2 0 0 2 4 2 2 0 2 0 0 0 2 0 0

9 0 6 0 0 0 0 2 0 0 0 2 4 0 2 0 0

A 0 0 2 0 0 0 0 2 4 0 4 2 0 0 2 0

B 0 0 0 0 2 2 2 2 0 0 0 0 4 0 4 0

C 0 0 2 0 0 2 4 0 2 0 0 0 2 2 2 0

D 0 0 2 2 2 0 2 0 0 2 6 0 0 0 0 0

E 0 0 2 2 0 0 0 0 2 6 0 0 0 0 0 4

F 0 0 0 0 2 4 0 2 0 2 0 2 2 2 0 0

(c) Use Sage to compute the difference distribution matrix for this S-box
and check that results from (a) and (b).

(d) (1 point) What is the maximal difference probability?

cor:3 (e) (3 points) Give an upper bound for the propagation ratio of a differ-
ential trail through the first two rounds of our new baby-AES.
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(f) Find a differential trail through the first two rounds of our new baby-
AES whose propagation ratio achieves the upper bound of (e).

(g) (2 points) How many pairs of plaintext-ciphertext pairs will you request
for a differential attack against our new baby-AES using a trail whose
propagation ratio matches the upper bound obtained in (e). Use the
same implicit constant as we used for the attack on the original baby-
AES described at the beginning.

X Y Y’

0000 1110 0101

1111 1011

0001 0010 0101

1110 0111

0010 0001 1101

1101 1100

0011 0011 1011

1100 1000

0100 1101 0111

1011 1010

0101 1001 1100

1010 0101

0110 0000 0100

1001 0100

0111 0110 1001

1000 1111

MISSING: difference distribution table.

??

exe:diff-const Exercise 14. You visit a casino with 2k lotteries which have a probability
of winning of 1/2ℓ each. One of them is broken though and has a probability
of winning of p+ 1/2ℓ with p > 0.

We run the following experiment to find the “lucky” machine

1. Run each lottery N times and record the number of “wins”.

2. We call the set of machines with the most wins W
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3. The experiment is successful if the “lucky” machine is an element of W ,
and uniquely successful if the “lucky” machine is the unique element of
W .

Determine by experiment the answer to the following questions for k = ℓ = 8
and p = 1/64. for a filtered set, p =

1/4.
for a filtered set, p =

1/4.

1. For which size of N do you expect the experiment to be successful.

2. For which size of N do you expect the experiment to be uniquely suc-
cessful.

def gambling(N):

k = 8

l = k

nlotteries = 2^k

pwin = 1/2^l

biasbroken = 1/64

indexbroken = floor(random() * nlotteries)

counters = [0] * nlotteries

for lottery in range(nlotteries):

prob = pwin

if lottery == indexbroken:

prob += biasbroken

for i in range(N):

if random() < prob:

counters[lottery] += 1

winners = set()

maxcounter = max(counters)

for lottery in range(nlotteries):

if counters[lottery] == maxcounter:

winners.add(lottery)

successful = indexbroken in winners

uniquelysuccessful = successful and len(winners) == 1

return successful, uniquelysuccessful

# Try different N

for N in (100, 500, 1000):

s = 0
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us = 0

for i in range(100):

success, unique = gambling(N)

if success:

s += 1

if unique:

us += 1

print ’*** N = %d ***’ % N

print ’Successful in %d out of 100’ % s

print ’Uniquely so in %d out of 100’ % us

################### Output ##########################

*** N = 100 ***

Successful in 34 out of 100

Uniquely so in 20 out of 100

*** N = 500 ***

Successful in 89 out of 100

Uniquely so in 83 out of 100

*** N = 1000 ***

Successful in 99 out of 100

Uniquely so in 98 out of 100

Alternative solution

#exercise 2.2 (1)

import random

def lottery(N,k,l,p):

wins = [0]*(2**k)

prob=1/(2**l)

broProb=p+prob

for i in range(N):

for j in range (2**k):

rand = random.random()

if (j != (2**k)-1):

if (rand <= prob):

wins[j] +=1

else:

if (rand <= broProb):
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wins[j] +=1

return wins

lottery ( 1000, 8, 8, (1/64))

[2, 3, 4, 5, 5, 2, 3, 5, 1, 2, 3, 5, 3, 3, 5, 3, 0, 4, 4, 3, 5, 3, 5, 7,

2, 2, 5, 1, 2, 5, 4, 3, 3, 2, 4, 5, 1, 3, 3, 2, 5, 6, 2, 5, 1, 4, 2, 3,

5, 4, 1, 4, 4, 1, 5, 0, 3, 1, 5, 5, 7, 5, 4, 5, 9, 1, 4, 3, 2, 4, 4, 5,

5, 6, 5, 3, 5, 3, 8, 2, 5, 8, 8, 2, 6, 6, 3, 2, 4, 7, 3, 3, 9, 1, 5, 6,

2, 4, 4, 4, 5, 7, 3, 4, 6, 3, 4, 6, 5, 2, 6, 2, 4, 2, 3, 8, 2, 3, 2, 2,

5, 5, 9, 6, 0, 4, 7, 3, 4, 6, 5, 4, 4, 3, 4, 6, 3, 5, 7, 4, 5, 3, 1, 4,

4, 4, 2, 3, 2, 7, 2, 2, 2, 6, 2, 5, 4, 2, 5, 6, 1, 3, 3, 4, 5, 3, 4, 2,

1, 3, 9, 6, 0, 3, 7, 4, 5, 3, 6, 2, 5, 4, 5, 4, 3, 2, 5, 3, 1, 6, 0, 5,

4, 4, 5, 2, 7, 1, 5, 2, 5, 5, 4, 4, 1, 8, 5, 2, 5, 4, 5, 5, 7, 3, 4, 2,

4, 2, 7, 4, 4, 4, 3, 2, 4, 2, 4, 0, 5, 7, 1, 6, 2, 5, 0, 5, 3, 4, 1, 5,

4, 6, 3, 0, 3, 4, 4, 2, 5, 2, 1, 3, 3, 3, 4, 25]

#exercise 2.2 (2)

import random

def lottery(N,k,l,p):

wins = [0]*(2**k)

prob=1/(2**l)

broProb=p+prob

for i in range(N):

for j in range (2**k):

rand = random.random()

if (j != (2**k)-1):

if (rand <= prob):

wins[j] +=1

else:

if (rand <= broProb):

wins[j] +=1

W = max (wins)

wins = filter(lambda x:x==W, wins)

return wins

lottery ( 500, 8, 8, (1/64))

[10]
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#exercise 2.3 (i)

import random

def lottery1(N,k,l,p):

wins = [0]*(2**k)

prob=1/(2**l)

broProb=p+prob

for i in range(N):

for j in range (2**k):

rand = random.random()

if (j != (2**k)-1):

if (rand <= prob):

wins[j] +=1

else:

if (rand <= broProb):

wins[j] +=1

W = max (wins)

lucky = wins[(2**k)-1]

wins = filter(lambda x:x==W, wins)

if (lucky == W):

return 1

else:

return 0

def findN1():

success = 0

N=2

while (success < 19):

success = 0

N=N*2

for i in range (20):

success += lottery1 ( N, 8, 8, (1/64))

return N

#exercise 2.3 (ii)

import random

def lottery(N,k,l,p):

wins = [0]*(2**k)

prob=1/(2**l)

broProb=p+prob

for i in range(N):
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for j in range (2**k):

rand = random.random()

if (j != (2**k)-1):

if (rand <= prob):

wins[j] +=1

else:

if (rand <= broProb):

wins[j] +=1

W = max (wins)

lucky = wins[(2**k)-1]

wins = filter(lambda x:x==W, wins)

if (lucky == W):

if len(wins) == 1:

return 1

return 0

def findN():

success = 0

N=8

while (success <= 99):

success = 0

N=N*2

print N

for i in range (100):

success += lottery ( N, 8, 8, (1/64))

return N

findN1()

1024

exe:average-S Exercise 15 (the average S-box). For the following S-boxes on F16 draw the
difference distribution matrix and find the maximal difference probability:

1. identity id,

S = mq.SBox(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) # identity

S.difference_distribution_matrix()

S.maximal_difference_probability()
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2. affine linear transformation x 7→ (a3 + a2 + 1) · x+ (a2 + a),

3. (extended) inverse

inv(x) =

{

0 if x = 0,

x−1 else,

4. baby-AES S-box.

5. Plot the distribution of the maximal difference probability of 1 000
randomly chosen S-boxes.

Erst mal alles bis auf die (v):

################## Code #####################

values = list(aes.base_ring())

values.sort()

def printstuff(sbox):

print ’Max diff prob: %f’ % sbox.maximal_difference_probability()

print sbox.difference_distribution_matrix()

print

print ’*** Identity ***’

identity = mq.SBox(values)

printstuff(identity)

print ’*** Affine linear ***’

affinelinear = mq.SBox([(a^3 + a^2 + 1) * x + (a^2 + a) for x in values])

printstuff(affinelinear)

print ’*** Extended inverse ***’

sboxout = []

for x in values:

if x == 0:

sboxout.append(0)

else:

sboxout.append(1/x)

inverse = mq.SBox(sboxout)

printstuff(inverse)
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print ’*** Baby-AES S-box ***’

printstuff(aes.sbox())

################## Output ####################

*** Identity ***

Max diff prob: 1.000000

[16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[ 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[ 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0]

[ 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0]

[ 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0]

[ 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0]

[ 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0]

[ 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0]

[ 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0]

[ 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0]

[ 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0]

[ 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0]

[ 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0]

[ 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0]

[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0]

[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16]

*** Affine linear ***

Max diff prob: 1.000000

[16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[ 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0]

[ 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0]

[ 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0]

[ 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[ 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0]

[ 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0]

[ 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0]

[ 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0]

[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16]

[ 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0]

[ 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0]

[ 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0]

[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0]
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[ 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0]

[ 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0]

*** Extended inverse ***

Max diff prob: 0.250000

[16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[ 0 4 0 0 0 0 2 2 0 2 0 2 0 2 2 0]

[ 0 0 0 2 0 0 0 2 0 4 2 0 2 2 0 2]

[ 0 0 2 0 0 0 0 2 2 0 2 2 2 0 4 0]

[ 0 0 0 0 0 2 2 0 2 0 2 0 0 4 2 2]

[ 0 0 0 0 2 0 2 0 2 2 0 4 2 0 0 2]

[ 0 2 0 0 2 2 2 4 0 0 2 0 2 0 0 0]

[ 0 2 2 2 0 0 4 2 2 0 0 0 0 0 0 2]

[ 0 0 0 2 2 2 0 2 0 0 0 2 0 0 2 4]

[ 0 2 4 0 0 2 0 0 0 2 0 0 2 0 2 2]

[ 0 0 2 2 2 0 2 0 0 0 0 0 4 2 2 0]

[ 0 2 0 2 0 4 0 0 2 0 0 2 2 2 0 0]

[ 0 0 2 2 0 2 2 0 0 2 4 2 0 0 0 0]

[ 0 2 2 0 4 0 0 0 0 0 2 2 0 2 0 2]

[ 0 2 0 4 2 0 0 0 2 2 2 0 0 0 2 0]

[ 0 0 2 0 2 2 0 2 4 2 0 0 0 2 0 0]

*** Baby-AES S-box ***

Max diff prob: 0.250000

[16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[ 0 2 2 2 2 0 0 0 2 0 0 0 2 4 0 0]

[ 0 2 0 4 2 2 2 0 0 2 0 0 0 0 0 2]

[ 0 2 4 0 0 2 0 0 2 2 0 2 0 0 2 0]

[ 0 0 2 0 4 2 0 0 0 0 2 0 2 0 2 2]

[ 0 0 0 2 0 0 0 2 4 2 0 0 2 0 2 2]

[ 0 4 0 0 0 2 0 2 0 2 2 0 2 2 0 0]

[ 0 2 0 0 0 0 2 0 0 0 0 2 4 2 2 2]

[ 0 2 2 0 0 0 2 2 2 0 2 0 0 0 0 4]

[ 0 0 2 2 0 0 0 0 0 2 2 4 0 2 0 2]

[ 0 0 2 0 2 0 2 2 0 4 0 2 2 0 0 0]

[ 0 0 0 0 2 0 2 0 2 2 4 0 0 2 2 0]

[ 0 0 0 2 0 4 2 0 2 0 2 2 2 0 0 0]

[ 0 0 0 0 2 2 0 4 2 0 0 2 0 2 0 2]

[ 0 0 2 2 0 2 4 2 0 0 0 0 0 2 2 0]

[ 0 2 0 2 2 0 0 2 0 0 2 2 0 0 4 0]
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###################################################

###################################################

Jetzt die (v):

#################### Code ##########################

def plotmaxdiffdist(bits):

freqs = [0] * (2^bits + 1)

for i in range(100):

values = range(2^bits)

shuffle(values)

s = mq.SBox(values)

freqs[s.maximal_difference_probability_absolute()] += 1

points = point([(i, freqs[i]) for i in range(len(freqs))])

points.plot().show()

for bits in (4, 2, 8):

print ’%d bits’ % bits

plotmaxdiffdist(bits)

#################### Output #########################

nicht in ASCII darstellbar

4. Linear Cryptanalysis

Exercise 16 (independent random variables). (3 points) Suppose that X1,exe:bias
X2, and X3 are independent discrete random variables defined on the set
{0, 1}. Let εi denote the bias of Xi, for i = 1, 2, 3. Under which conditions
on εi are X1⊕X2 and X2⊕X3 independent? (Recall, that in the lecture, we
saw that this is in general not the case.)

By the piling-up lemma we know the bias of X1 +X2 to be 2ǫ1ǫ2 and anal-
ogously for X2 + X3. If the two random variables were independent, then
we could use the piling-up lemma to find the bias of their sum (X1 +X2) +
(X2 + X3) = X1 + X3: It would be 2ǫ1,2ǫ2,3 = 8ǫ1ǫ

2
2ǫ3. On the other hand,

we know that the real bias of the sum (X1 + X2) + (X2 + X3) = X1 + X3
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is 2ǫ1ǫ3. So we conclude that the two are independent if the two biases are
equal, i.e. 8ǫ1ǫ

2
2ǫ3 = 2ǫ1ǫ3, which means that ǫ1 = 0 or ǫ3 = 0 or ǫ2 = ±

1
2
.

exe:lin-attack Exercise 17 (Linear cryptanalysis). In the lecture, we found a linear ap-
proximation through the first two rounds of baby-AES with bias 1/32. For
the corresponding linear attack, we requested 2048 randomly chosen plaintext-
ciphertext pairs.

For this exercise, the S-box of baby-AES is replaced with the following new
4-bit S-box.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 8 4 2 1 C 6 3 D A 5 E 7 F B 9 0

We call this the new baby-AES.

cor:1 (a) (3 points) Compute the bias of the random variable X0⊕Y3⊕Y2⊕Y1.

cor:2 (b) (6 points) The linear approximation table of the new S-box is displayed
below, but the first two rows are missing. Complete the table.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2 0 2 0 2 -2 0 -2 0 -2 0 2 -4 -4 -2 0 2

3 0 0 2 2 0 4 2 -2 -2 -2 0 0 2 -2 4 0

4 0 2 0 -2 0 2 0 -2 2 -4 2 0 -2 0 -2 -4

5 0 4 -2 -2 2 2 0 4 -2 2 0 0 0 0 2 -2

6 0 0 4 0 2 2 -2 2 0 0 0 4 -2 -2 -2 2

7 0 -2 -2 0 4 -2 2 0 0 -2 -2 0 -4 -2 2 0

8 0 2 2 0 0 -2 -2 0 2 0 -4 -2 2 -4 0 -2

9 0 0 0 4 2 2 -2 2 2 -2 -2 -2 0 4 0 0

A 0 4 2 2 -2 -2 4 0 0 0 -2 2 -2 2 0 0

B 0 -2 4 -2 0 -2 0 2 -4 -2 0 -2 0 2 0 -2

C 0 0 2 2 4 0 2 -2 0 4 2 -2 0 0 -2 -2

D 0 -2 0 -2 -2 4 2 0 0 2 -4 -2 -2 0 -2 0

E 0 -2 -2 4 -2 0 0 2 -2 0 0 2 0 -2 -2 -4

F 0 0 0 0 0 0 4 4 2 -2 2 -2 2 -2 -2 2
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(c) Use Sage to compute the linear approximation matrix for this S-box
and check that results from (a) and (b).

(d) (1 point) What is the maximal absolute value of a bias?

cos:3 (e) (4 points) The maximal absolute value for nonzero random variables
listed in the linear approximation table is 4. Give an upper bound for
the absolute value of the bias of a linear approximation through the
first two rounds of our new baby-AES. [Hint: Piling-Up Lemma.]

(f) Find a linear approximation through the first two rounds of our new
baby-AES whose bias achieves the upper bound of (e).

(g) (2 points) How many plaintext-ciphertext pairs will you request for a
linear attack against our new baby-AES using a linear approximation
whose bias matches the upper bound obtained in (e). Use the same
implicit constant as we used for the attack on the original baby-AES
described above.

(h) (3 points) Compare the amount and the type of encrypted information
an attacker requires for differential and linear attacks, respectively.

(i) (4 points) The differential and linear attack presented in the lecture do
not recover the complete secret key. State precisely their actual output
and argue why this is in many situations still considered a “break”.
[Hint: The key schedule of (baby-)AES is invertible.]

sage: S = mq.SBox(8,4,2,1,0xC,6,3,0xD,0xA,5,0xE,7, 0xF,0xB,9,0)

sage: S.linear_approximation_matrix()

[ 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[ 0 2 -2 0 2 0 0 -2 -4 -2 -2 0 2 0 -4 2]

[ 0 2 0 2 -2 0 -2 0 -2 0 2 -4 -4 -2 0 2]

[ 0 0 2 2 0 4 2 -2 -2 -2 0 0 2 -2 4 0]

[ 0 2 0 -2 0 2 0 -2 2 -4 2 0 -2 0 -2 -4]

[ 0 4 -2 -2 2 2 0 4 -2 2 0 0 0 0 2 -2]

[ 0 0 4 0 2 2 -2 2 0 0 0 4 -2 -2 -2 2]

[ 0 -2 -2 0 4 -2 2 0 0 -2 -2 0 -4 -2 2 0]

[ 0 2 2 0 0 -2 -2 0 2 0 -4 -2 2 -4 0 -2]

[ 0 0 0 4 2 2 -2 2 2 -2 -2 -2 0 4 0 0]

[ 0 4 2 2 -2 -2 4 0 0 0 -2 2 -2 2 0 0]

[ 0 -2 4 -2 0 -2 0 2 -4 -2 0 -2 0 2 0 -2]

[ 0 0 2 2 4 0 2 -2 0 4 2 -2 0 0 -2 -2]
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[ 0 -2 0 -2 -2 4 2 0 0 2 -4 -2 -2 0 -2 0]

[ 0 -2 -2 4 -2 0 0 2 -2 0 0 2 0 -2 -2 -4]

[ 0 0 0 0 0 0 4 4 2 -2 2 -2 2 -2 -2 2]

exe:lin-approx-matrix Exercise 18. Let S : { 0, 1 }m → { 0, 1 }n be an S-box. Prove the following
properties of the linear approximation matrix.

(a) NL(0, 0) = 2m, NL(∗, 0) = 2m−1

(b) colsum = 22m−1 ± 2m−1

(c) totalsum2n+2m−1or2n+2m−1 + 2n+m−1

An S-box is balanced, if #S−1(y) = 2n−m for all y ∈ { 0, 1 }n.

(a) If S is balanced, then NL(0, ∗) = 2m−1.

(b) If S is balanced, then rowsum = 2m+n−1 − 2m−1 + i2n, where i is an
int 0 ≤ i ≤ 2m−n.

Exercise 19. (4 points) For each of the eight DES S-boxes, compute theexe:bias2
bias of the random variable X2 ⊕ Y1 ⊕ Y2 ⊕ Y3 ⊕ Y4. (Note that the DES
S-boxes map 6-bit input to 4-bit output and are therefore not invertible. But
this should not concern you here.)

exe:average-S2 Exercise 20 (the average S-box). For the following S-boxes on F16 draw the
linear approximation matrix and find the maximal linear bias:

1. identity id,

2. affine linear transformation x 7→ (a3 + a2 + 1) · x+ (a2 + a),

3. (extended) inverse

inv(x) =

{

0 if x = 0,

x−1 else,

4. baby-AES S-box.

5. Pick 1 000 S-boxes at random. Draw the distribution of the maximal
linear bias.
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5. Boolean Functions and Avalanche Criterion

exe:dual Exercise 21 (The dual of F2n). Show that every linear boolean function on
F2n is of the form x 7→ 〈a|x〉 for some a ∈ F2n . (The vector space of these
functions is called the dual of F2n and denoted (F2n)

∨).

exe:correlation Exercise 22 (Correlation). 1. Compute all possible values of corr(f, ℓ) if
f and ℓ are linear. [Hint: Without loss of generatility you can assume
that f is the zero function.]

2. Use a computer algebra system of your choice to compute the corre-
lations corr(ℓi ◦ fj, ℓk) of the following functions on 8 bits. Hand in a
little table for each of the fj.

• f−1(x) = x−1 for x 6= 0 and f−1(0) = 0,

• f1(x) = x,

• f2(x) = x2,

• f3(x) = x3,

• f∗(x) = (a7+ a6)a
7+(a3+ a5)a

6+(a6+ a5)a
5+(a2+ a7+ a4)a

4+
(a5 + a7 + a4 + a6)a

3 + (a1 + a5)a
2 + (a7 + a4 + a6)a+ a6 + a0 + a4

for x =
∑

0≤i<8 aia
i ∈ F2[a]/ 〈a

8 + a4 + a3 + a2 + 1〉.

• ℓ0(x) = a0,

• ℓ1(x) = a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7,

• ℓ2(x) = a0 + a4 + a7,

• ℓ3(x) = a5 + a7 + 1,

• ℓ4(x) = a5 + a7

for x =
∑

0≤i<8 aia
i ∈ F2[a]/ 〈a

8 + a4 + a3 + a2 + 1〉.

exe:avalanche Exercise 23 (Avalanche). After how many rounds do the following cryp-
tosystems achieve the strict avalanche criterion? [State the properties of
the substitution- and permutation-layers that you use and give a complete
argument.]

(a) (3 points) baby-AES and (original) AES,

(b) (3 points) a Substitution-Permutation-Network with n-bit input and
output.
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last: each round n/m S-boxes.

1st round: 1-bit input can effect 2 output bits 2nd round: 2-bit input can
effect 4 output bits

log2 n rounds to effect each round; +1 for strict avalanche criterion.

Alternatively, log2(n/m) such that every input word effects every output
word.

exe:average-S3 Exercise 24 (the average S-box). We formulated the following criterion for
a “good” S-box:

Flipping a single input bit, flips at least two output bits.

Which of the following S-boxes on F16 satisfies this criterion:

1. identity id,

2. affine linear transformation x 7→ (a3 + a2 + 1) · x+ (a2 + a),

3. (extended) inverse

inv(x) =

{

0 if x = 0,

x−1 else,

4. baby-AES S-box.

5. Pick 1000 S-boxes at random. What percentage satisfies this criterion?

6. Hash Functions

exe:triplets Exercise 25. Let h : X → Y be a hash function (assume #X >> #Y ). In
lecture we showed that finding a collision for h can be done with O((#X)1/2)
random samples of h. How many random samples would it take until we
obtain a three way collision, namely distinct strings x,x∗,x′ in X such that
h(x) = h(x∗) = h(x′)?
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O((\# X)^(2/3))

An informal argument for this is as follows: suppose we collect n

random samples. The number of triples among the n samples is n

choose 3 which is O(n3). For a particular triple x,y,z to be a 3-way

collision we need H(x)=H(y) and H(x)=H(z). Since each one of these

two events happens with probability 1/|T| (assuming H behaves like a

random function) the probability that a particular triple is a 3-way

collision is O(1/|T|2). Using the union bound, the probability that

some triple is a 3-way collision is O(n3/|T|2) and since we want

this probability to be close to 1, the bound on n follows.

exe:commitment Exercise 26 (Matching pennies over the phone). The following protocol lets
you play “Matching Pennies” over the phone when you have access to a hash
function h.

1. Randomly choose a number r

2. Choose your a bit b corresponding to heads/tails and append it to r

3. Compute commitment x = h(r | b) and send it to your fellow player.

4. Receive her commitment y

5. Both players reveal their choices and determine the winner.

(a) Assume h is not collision resistant/2nd-preimage-resistant/preimage-
resistant. What consequences does it have for the game?

(b) Why is it necessary to prepend your chosen bit b with a random num-
ber?

• if not collision resistant, then not binding

• if not preimage resistant, then you always loose

exe:tree-hash Exercise 27 (Trees as mode of operation). Let h0 : {0, 1}
2m → {0, 1}m be a

collision-resistant hash function with m ∈ N>0.
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32.1 (a) (3 points) We construct a hash function h1 : {0, 1}
4m → {0, 1}m as

follows: Interpret the bit string x ∈ {0, 1}4m as x = (x1|x2), where
both x1, x2 ∈ {0, 1}

2m are words with 2m bits. Then compute the hash
value h1(x) as

h1(x) = h0(h0(x1)|h0(x2)).

Show: h1 ist collision-resistant.

32.2 (b) (1 point) Let i ∈ N, i ≥ 1. We define a hash function hi : {0, 1}
2i+1m →

{0, 1}m recursively using hi−1 in the following way: Interpret the bit
string x ∈ {0, 1}2

i+1m as x = (x1|x2), where both x1, x2 ∈ {0, 1}
2im are

words with 2im bits. Then the hash value hi(x) is defined as

hi(x) = h0(hi−1(x1)|hi−1(x2)).

Show: hi is collision-resistant.

(c) (5 points) The number p = 2027 is prime. Now define h0 : {0, 1}
22 →

{0, 1}11 as follows: Let x = (b21, . . . , b0) be the binary representation
of x. Then x1 =

∑

0≤i≤10 b11+i2
i mod p and x2 =

∑

0≤i≤10 bi2
i mod p.

Show that the numbers 5 and 7 have order p − 1 modulo p. Now
compute y = 5x1 · 7x2 mod p and let h0(x) = (B10, . . . , B0) be the binary
representation of y, i.e. y =

∑

0≤i<11 Bi2
i. Use the birthday attack to

find a collision of h0 and of h1 defined as described in (a).

Note: “|” denotes the concatenation of bit strings.

exe:variants-of-MD Exercise 28 (Variants of the Merkle-Damgård construction). Let n > 1 be
an integer and ℓ a positive polynomial. To obtain a hash function

h :
⋃

0≤k≤ℓ(n)

{ 0, 1 }k → { 0, 1 }n ,

eq:1

we use the Merkle-Damgård construction with a collision-resistant compres-
sion function f : { 0, 1 }n × { 0, 1 }n → { 0, 1 }n and a padding scheme as
specified below. [Assume initialization vector IV = 0 . . . 0 throughout the
exercise.]

(a) (2 points) Messages are only padded with 0’s until the length is a
multiple of the block length. Is h collision-resistant? Prove or provide
a counterexample.
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(b) (2 points) Messages are padded with a single 1 followed by 0’s until
the length is a multiple of the block length. This padding includes
no information on the message length and the proof of the Merkle-
Damgård theorem fails. Let m∗ be a block with f(0,m∗) = 0. Build
collisions for h from this non-collision for f .

(c) (3 points) Messages are padded properly as described in the lecture,
but the last compression is replaced by a concatenation. In other words,
the length of the message is appended to the last intermediate hash,
but not hashed itself. Is h collision-resistant? Prove or provide a coun-
terexample.

(d) (3 points) Let n = 4, ℓ = n2, f : { 0, 1 }4×{ 0, 1 }4 → { 0, 1 }4 , (hi,mi) 7→cor:4
hi ⊕mi, and use a padding as described in the lecture. Compute the
hash z of x = 0000 and provide a 2nd-preimage for x.

(e) (4 points) Find a collision of two equal-length messages for the hash
function described in (d). [Hint: This requires at least length 6.]

• 100 and 1000 and 10000

•

•

• m0|m1 and m1|m0; zxor00blocklength

exe:hash-with-permute Exercise 29 (Hashing with permutations). Consider a hash function obtained
by directly applying the Merkle-Damgård construction (without appending
an extra block which encodes the message length) to family of permutations
πm. This means that starting from an intermediate hash value hi and a
message block mi, the next hash value is hi+1 = πmi

(hi). The goal of this ex-
ercise is to show a weakness of this hash function with respect to the preimage
property.

(a) (2 points) Show that when π−1
m is available for every m, preimages

can be easily computed if you can choose the initialization vector h0 at
your digression.

This is also true, if h0 is a fixed value. Consider the following strategy.
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item:i 1. Choose a long sequence of message blocks Mi and compute, starting
from h0, the intermediate hash value which we denote by hi.

item:ii 2. Let hF be the hash value for which you want to compute a preimage.
Choose another long sequence of message blocks M ′

i and compute back-
wards, starting from hF , the intermediate hash values h′

i leading to hF

with the blocks M ′
i .

item:iii 3. Stop when h′
i appears in the list of hi’s from step 1.

(b) (2 points) How does the strategy above lead to a preimage for hF .

(c) (3 points) How would you modify the attack, when proper padding is
used?

(d) (5 points) Let πm be a n-bit block cipher with n-bit keys. What is a
reasonable choice for the number of blocks in step 1? How many blocks
do you expect to process in step 2 until the condition 3 is satisfied.
Compare this to the generic complexity of a brute-force preimage finder.

exe:SHA-bias Exercise 30 (Bias of the SHA-functions). (4 points) Consider the two non-
linear functions MAJ and IF restricted to three bits input (and one bit
output). Compute the respective bias.

exe:non-lin-SHA-0 Exercise 31 (Adding non-linearity to the linear model of SHA-0). In the lec-
ture we found 63 non-zero bit sequences of 80 bits that can be used to intro-
duce local collisions in a way that is consistent with the message expansion.
Our goal is the maximize the probability of success that such a bit sequence
will also yield a collision for the original SHA-0.

We

• choose a bit sequence of small weight, and

• insert it at bit position 1.

1. (2 points) Justify the two criteria. (Remember that bit positions are
numbered from 0 to 31.)

Let us track the insertion of a local collision on bit 1 of W (i). For simplicity,
assume that the perturbation is ↑. This affects bit 1 of A(i+1).

If no unwanted carries occur, bit 1 of A(i+1) is also ↑ and all other remain
unchanged. Otherwise, bit 1 of A(i+1) is ↓ and bit 2 is no longer constant
and this may propagate.
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2. (1 point) Assume the inputs of the addition are uniformly random
values. What is the probability that no carry occurs?

In step i+2, the change ↑ in A(i+1) is invoked (after rotation) in the compu-
tation of A(i+2). This is corrected by the change in W (i+2).

3. (1 point) Give a necessary and sufficient condition for the change in
bit 6 of W (i+2) such that the correction is performed correctly, i.e. as
in the linear model.

In step i+3, the change ↑ is on bit 1 of B(i+2) and involved in the computation
of A(i+3). It is corrected with bit 1 of W (i+3). Three cases are possible, after
B(i+2) is processed by f ( XOR, MAJ , or IF ):

• The change ↑ has vanished,

• the change ↑ remains unchanged, or

• the change ↑ has been reversed to a change ↓

4. (3 points) Compute the probability that a change does not vanish for
each of the three possible functions.

The next corrections concern bit 31 of A(i+4) and A(i+5).

5. (1 point) Show that these corrections are always done correctly, if the
perturbation does not vanish. In other words, they are done correctly
if the change remains unchanged or if the change is reversed.

Finally, the correction on bit 31 of A(i+6) is always correctly canceled by
the correction on bit 31 of W (i+5) and we can compute for any round i the
probability of successfully applying a single local collision at position 1 in
this round.

6. (+4 points) Assume that these probabilities have been computed. De-
scribe a (feasible) strategy to produce collisions from that information.
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