Esecurity: secure internet & e-voting, summer 2013 MICHAEL NÜSKEN

5. Exercise sheet Hand in solutions until Monday, 13 May 2013, 10:00

Exercise 5.1 (Hardcore bit for the discrete logarithm). (6 points)

Let *G* be a cyclic group of even order *d* with a generator *g*, and let $\omega = g^{d/2}$. Furthermore suppose that an algorithm for computing square roots in *G* is known. Let BitZero be a probabilistic algorithm that, given g^i , computes the least significant bit of *i* in expected polynomial time.

The square root algorithm is given g^{2i} with $0 \le i < d/2$ and computes either the square root g^i or the square root ωg^i . Let Oracle be a probabilistic expected polynomial time algorithm that decides, which of the two square roots is g^i . [Note: This could be done by an oracle for the second least significant bit, bit₁(*i*), of the discrete logarithm of g^i , where $0 \le i < d$.]

- (i) Formulate an algorithm for the discrete logarithm that uses at most polynomially many calls to Oracle and otherwise uses expected polynomial time. (*Recall:* The algorithm gets as input g^i and should compute the discrete logarithm $dlog_a(g^i) = i$ with $0 \le i < d$.)
- (ii) What implications does this have on the security of ElGamal encryption 2 scheme?