Exercise 5.1 (Hardcore bit for the discrete logarithm). (6 points)

Let G be a cyclic group of even order d with a generator g, and let $\omega = g^{d/2}$. Furthermore suppose that an algorithm for computing square roots in G is known. Let BitZero be a probabilistic algorithm that, given g^i, computes the least significant bit of i in expected polynomial time.

The square root algorithm is given g^{2i} with $0 \leq i < d/2$ and computes either the square root g^i or the square root ωg^i. Let Oracle be a probabilistic expected polynomial time algorithm that decides, which of the two square roots is g^i. [Note: This could be done by an oracle for the second least significant bit, $\text{bit}_1(i)$, of the discrete logarithm of g^i, where $0 \leq i < d$.]

(i) Formulate an algorithm for the discrete logarithm that uses at most polynomially many calls to Oracle and otherwise uses expected polynomial time. (Recall: The algorithm gets as input g^i and should compute the discrete logarithm $d\log_g(g^i) = i$ with $0 \leq i < d$.)

(ii) What implications does this have on the security of ElGamal encryption scheme?