Esecurity: secure internet & e-voting, summer 2013 Michael Nüsken

13. Exercise sheet Hand in solutions until Monday, 15 July 2013, 08:00

Exercise 13.1 (KnowDlog). (3 points)	
Write down the proofs that the KNOWDLOG argument, as presented in the lecture, satisfies	3
o completeness,	
o soundness,	
o zero-knowledge.	
Exercise 13.2 (Distributed key generation). (4 points)	
Consider DISTRIBUTED KEY GENERATION and DISTRIBUTED DECRYPTION as presented in the lecture. Show that a malicious key holder can not learn the keys of his fellows.	4
Hint: Use the fact that KNOWDLOG and EQDLOGS are zero-knowledge.	
Exercise 13.3 (DDH and CDH for EqDlogs). (12 points)	
In the light of the Decisional Diffie-Hellmann Problem (DDH) and the computational Diffie-Hellmann-Problem (CDH) we distinguish three different types of groups:	
Hard: Groups where DDH and CDH are hard.	
Gap-DH: Groups where DDH is easy, but CDH is hard.	
Easy: Groups where DDH and CDH are easy.	
(i) Show that every group belongs to one of the three named classes.	2
(ii) Investigate the three properties of zero-knowledge protocols for EqDlogs on groups from the three classes.	6

4

+3

+4

Let us take a look at elliptic curves. A pairing on an elliptic curve *E* into a field F is a map $e(\cdot, \cdot) \colon E \times E \to F^{\times}$ satisfying the two properties:

bilinearity $e(aP, bQ) = e(P, Q)^{ab}$ for all points $P, Q \in E$ and integers $a, b \in \mathbb{Z}$. **non-degeneracy** $e(P, P) \neq 1$ for all points $P \in E$.

(iii) To which of the three mentioned classes belong elliptic curves with an efficiently computable pairing?

Exercise 13.4 (dudle).

(0+13 points)

Having public polls and scheduling parties are processed similar to elections. A common tool for this is http://www.doodle.com/. A project at TU Dresden aims at generating a "privacy-enhanced" version of doodle, see http: //dudle.inf.tu-dresden.de/.

- (i) Find the documentation and name the problems they addressing.
- (ii) There are four steps in the scheme. Name them and present their content in pseudo-code.
- (iii) Comment on the designer's claims concerning
 - o verifiability,
 - o privacy,
 - o usability, and
 - computational complexity.