
Lecture Notes

Esecurity: secure internet & e-voting

Michael Nüsken

b-it

(Bonn-Aachen International Center

for Information Technology)

Summer 2013

c©2013 Michael Nüsken

IPSEC & IKE

Michael Nüsken

25 June 2007

Before all: we are talking about a collection of protocols. Each partner
of the exchange has to keep some information on the connection. This is
in our context called the security association (SA). It contains specification
about the algorithms that should be used for encryption and authentication,
it contains keys for these, it may contain traffic selectors (filtering rules), and
more. Each SA manages a simplex connection for one type of service. In
each direction there will be an SA for the key exchange (IKE_SA) and one
for the encapsulating security payload or for the authentication header. So
each partner has to maintain at least four SAs. Such an SA is selected by an
identifier, the so-called security parameter index (SPI). It is chosen randomly
but so that it is unique.

1. IPsec

The secure internet protocol modifies the internet protocol slightly. We have
the choice between transport and tunnel mode. In tunnel mode, an IP packet

IP header IP payload

is wrapped in with a new IP header and an IPsec header to

new IP

header
IPsec header IP header IP payload

In transport mode, only the IPsec header is added:

IP header IPsec header IP payload

There are two types of IPsec headers: the encapsulating security payload
(ESP) and the authentication header (AH).

2 Michael Nüsken

1.1. IPsec encapsulating security payload. The ESP specifies that
and how its payload is encrypted and (optionally) authenticated. Actually,
this ‘header’ is split into a part before and one after the data:

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Security Parameter Index (SPI)

Sequence number

IV (optional)

Payload data [variable]

TFC padding [optional, variable]

Padding (0-255 octets)

Padding length Next header

Integrity Check Value (ICV) [variable]

The security parameter index identifies the SA and thus all necessary algo-
rithms and key material. To create the secured packet from the original one,
it is first padded. Padding is used to enlarge the data length to a multiple
of a block size that might be associated with the encryption. Traffic flow
confidentiality (TFC) padding can be used to disguise the real size of the
packet. Then the data is encrypted; in tunnel mode including the old IP
header. To be precise, all the information from Payload data to Next header
is encrypted. Next, a message authenticion code is calculated for this en-
crypted text and security parameter index, sequence number, initialization
vector (IV) and possibly further padding; actually the message authentica-
tion code covers the entire packet but the header and the integrity check
value plus the extended sequence number and integrity check padding if any.

1.2. IPsec authentication header. The AH authenticates its payload
and also parts of the IP header. (Yes, this does violate the hierarchy.)

2. Internet key exchange (version 2)

Any message in the internet key exchange starts with a header of the form

IPsec & IKE 3

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

IKE_SA initiator’s SPI

IKE_SA responder’s SPI

Next payload
Major

version

Minor

version
Exchange type X I V R X

Message ID

Length

Clearly, the version is 2.0 with the present Exchange type Value

Reserved 0-33

IKE_SA_INIT 34

IKE_AUTH 35

CREATE_CHILD_SA 36

INFORMATIONAL 37

Reserved to IANA 38-239

Reserved for private use 240-255

drafts (major version: 2, minor version:
0). The flags X are reserved, the I(nitiator)
bit is set whenever the message comes from
the initiator of the SA, the V(ersion) bit is
set if the transmitter can support a higher
major version, the R(esponse) bit is set if
this message is a response to a message
with this Message ID. The header is usually followed by some payloads like

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Next payload C Reserved(0) Payload length

Payload

The C(ritical) bit indicates that the pay-
load is critical. In case the recipient does
not support a critical payload it must re-
ject the entire message. A non-critical pay-
load can be simply skipped. All the pay-
loads defined in RFC4306 are to be han-
dled as critical ones whatever the C bit
says.

4 Michael Nüsken

Next payload Notation Value

None 0

RESERVED 1-32

Security Association SA 33

Key Exchange KE 34

Identification - Initiator IDi 35

Identification - Responder IDr 36

Certificate CERT 37

Certificate Request CERTREQ 38

Authentication AUTH 39

Nonce Ni, Nr 40

Notify N 41

Delete D 42

Vendor ID V 43

Traffic Selector - Initiator TSi 44

Traffic Selector - Responder TSr 45

Encrypted E 46

Configuration CP 47

Extensible Authentication EAP 48

Reserved to IANA 49-127

Private use 128-255

2.1. Initial exchange.

In
it

ia
to

r

Hdr, SAi 1, KEi, Ni
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Hdr, SAr 1, KEr, Nr, [CERTREQ]
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Hdr, SK

{

IDi, [CERT,][CERTREQ,][IDr,]

AUTH, SAi 2,TSi,TSr

}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Hdr, SK

{

IDr, [CERT,]

AUTH, SAr 2,TSi,TSr

}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

R
es

p
on

d
er

Protocol 2.1. IKE_SA_INIT.

1. Prepare SAi1, the four lists of supported cryp-
tographic algorithms for Diffie-Hellman key ex-
change (groups), for the pseudo random function
used to derive keys, for encryption, and for au-
thentication.
Guess the group for Diffie-Hellman and compute
KEi = ga.
Choose a nonce Ni. Hdr, SAi 1, KEi, Ni

−−−−−−−−−−−−−−−−−−−−→
2. Choose SAr1 from SAi1 unless no variant is sup-

ported.

IPsec & IKE 5

Compute KEr = gb if the group was guessed cor-
rectly. (Otherwise send:

Hdr,N(INVALID_KE_PAYLOAD, group)

.)
Choose a nonce Nr.

Hdr, SAr 1,KEr,Nr,

[CERTREQ]
←−−−−−−−−−−−−−−−−−−−−

3. Both parties now derive the session keys. We as-
sume that prf is the selected pseudo random func-
tion which gets a key and a bit string as input.

SKEYSEED = prf(Ni|Nr, gab),

SK_d|SK_ai|SK_ar|SK_ei|SK_er|SK_pi|SK_pr

= prf+(SKEYSEED,Ni |Nr |SPIi |SPIr)

where prf+(K,S) = T1|T2|T3| . . . , and T1 =
prf(K,S|0x01), Ti = prf(K,Ti−1|S|i) for i > 1.
SK_d is used for the derivation of keys in a child
SA. SK_ai and SK_ei are used for authenticat-
ing and encrypting messages sent by the initiator,
SK_ar and SK_er for messages sent by the re-
sponder.

4. The initiator send its identity IDi, optionally one
or more certificates CERT, a certificate request
CERTREQ (possibly including a list of trusted
CAs), and optionally the responders identity IDr
(it may be that the responder serves multiple iden-
tities ‘behind’ it).
Further she computes an authentication AUTH
(using the key from the first CERT payload) for
the entire first message concatenated with the re-
sponder’s nonce Nr and the value prf(SK_pi, IDi).
The authentication method can be RSA digi-
tal signature (1), shard key message integrity
code (2), or DSS digital signature (3).

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Next payload C Reserved(0) Payload length

Auth method Reserved

Authentication data

The initiator starts to negotiate a child SA in SAi 2
with proposed traffic selectors TSi, TSr.

Hdr, SK

IDi, [CERT,]

[CERTREQ,]

[IDr,]

AUTH, SAi 2,

TSi,TSr

−−−−−−−−−−−−−−−−−−−−→
5. The responder sends its identity IDr, certifi-

cate(s). He computes an authentication AUTH
for the entire second message concatenated

6 Michael Nüsken

with the initiator’s nonce Ni and the value
prf(SK_pr, IDr).
Further he supplies the answer SAr 2 to the child
SA creation and sends the accepted traffic selec-
tors TSi, TSr.

Hdr, SK

IDr, [CERT,]

AUTH, SAr 2,

TSi,TSr

←−−−−−−−−−−−−−−−−−−−−

If this initial exchange is completed successfully the IKE_SA and a
CHILD_SA are ready for use. Keying material for the childs is generated
similar to the IKE_SA keys:

KEYMAT = prf+(SK_d,Ni |Nr)

2.2. Creating additional child SAs. Further childs can be created un-
der this IKE_SA using a CREATE_CHILD_SA exhange:

In
it

ia
to

r Hdr, SK

{

[N,] SAi 2,Ni, [KEi,]

[TSi,TSr]

}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Hdr, SK

{

SAr 2,Nr, [KEr,]]

[TSi,TSr]

}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

R
es

p
on

d
er

In case a CHILD_SA shall be rekeyed the notification payload N of type
REKEY_SA specifies which SA is rekeyed. This can be used to established
additional SAs as well as to rekey ages ones. Create new ones and afterwards
delete the old ones. Also the IKE_SA can be rekeyed similarly.

In a CREATE_CHILD_SA exchange including an optional Diffie-Hellman
exchange new keying material uses also the new Diffie-Hellman key gir, it is
concatenated left to the nonces. (Though the Diffie-Hellman key exchange is
optional, it is recommended to either used it or at least to limit the number
of uses of the original key.)

2.3. Denial of Service. If the server has a lot of half open connections
(ie. the first message arrived, the second was sent but the third message is
pending) it may choose to send a cookie first. (In order to defeat a denial
of service attack.) It is suggested to use a stateless cookie consisting of a
version identifier and a hash value of the initiator’s nonce Ni, her IP IPi, her
security parameter index SPIi and some secret:

Cookie = verID | hash(Ni, IPi, SPIi, secretverID)

This way the secret can be exchanged periodically, say every second, and the
server only needs to store the last few (randomly) generated secrets.

IPsec & IKE 7

The authentication AUTH then refers to the second version of the cor-
responding message, so the one including the cookie or responding to that,
respectively. So the protocol becomes:

In
it

ia
to

r

Hdr, SAi 1, KEi, Ni
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Hdr, N(Cookie)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Hdr, N(Cookie), SAi 1, KEi, Ni
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Hdr, SAr 1, KEr, Nr, [CERTREQ]
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Hdr, SK

{

IDi, [CERT,][CERTREQ,][IDr,]

AUTH, SAi 2,TSi,TSr

}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Hdr, SK

{

IDr, [CERT,]

AUTH, SAr 2,TSi,TSr

}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

R
es

p
on

d
er

2.4. Extended authentication protocols. The initiator may leave out
AUTH and thereby tell the responder that she wants to perform an extensible
authentication which is then carried out immediately.

2.5. IP compression. The parties can negotiate IP compression.

2.6. ID payload. The ID payload

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Next payload C Reserved(0) Payload length

ID type Reserved

Identification data

can be an IP address (ID type 1), a fully-qualified domain name string (2),
a fully-qualified RFC822 email address string (3), an IPv6 address (5), an
ASN.1 X.500 Distinguished Name [X.501] (9), an ASN.1 X.500 general name
[X.509] (10), a vendor specific information (11).

2.7. CERT payload. The CERT payload

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Next payload C Reserved(0) Payload length

Cert encoding Certificate data

Certificate data

can be encoded in various widely used formats. Note that it can also carry
revocation lists.

8 Michael Nüsken

3. IKE version 1

The version 1 of the internet key exchange distinguishes between a main
mode and an aggressive mode. Further it allows four variants in each mode
depending on the desired type of authentication. Authentication can be
based on

◦ public signature keys,

◦ public encryption keys, originial protocol,

◦ public encryption keys, revised protocol, or

◦ a pre-shared secret.

We only give the bare protocol summaries here, using notation similar
to the one used for version 1. (They are not based on RFC240x but on the
book ?.)

3.1. Main mode, public signature keys.

A
li
ce

SAi
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SAr
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

KEi, Ni
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

KEr, Nr
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SK = f(gab,Ni,Nr)
SK {IDi,AUTH, [CERT]}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
SK {IDr,AUTH, [CERT]}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B
ob

3.2. Aggressive mode, public signature keys.

A
li
ce

SAi, KEi, Ni, IDi
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SAr, KEr, Nr, IDr, AUTH, [CERT]
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SK {AUTH, [CERT]}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

B
ob

IPsec & IKE 9

3.3. Main mode, public encryption keys, original protocol.
A

li
ce

SAi
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SAr
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

KEi, {Ni}
Bob

, {IDi}
Bob−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

KEr, {Nr}
Alice

, {IDr}
Alice←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SK = f(gab,Ni,Nr)
SK {AUTH, [CERT]}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
SK {AUTH, [CERT]}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B
ob

3.4. Aggressive mode, public encryption keys, original protocol.

A
li
ce

SAi, KEi, {Ni}
Bob

, {IDi}
Bob−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SAr, KEr, {Nr}
Alice

, {IDr}
Alice

, AUTH
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

AUTH
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

B
ob

3.5. Main mode, public encryption keys, revised protocol.

A
li
ce

SAi
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SAr
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

KA = hash(Ni, cookiei)
{Ni}

Bob
, KA {KEi}, KA {IDi}, KA {CERT}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
KB = hash(Nr, cookier)
{Nr}

Alice
, KB {KEr}, KB {IDr}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
SK = f(gab,Ni,Nr, cookiei, cookier)

SK {AUTH}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SK {AUTH}
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B
ob

3.6. Aggressive mode, public encryption keys, original protocol.

A
li
ce

KA = hash(Ni, cookiei)
SAi, {Ni}

Bob
, KA {KEi}, KA {IDi}, KA {CERT}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
KB = hash(Nr, cookier)

SAr, {Nr}
Alice

, KB {KEr}, KB {IDr}, AUTH
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SK = f(gab,Ni,Nr, cookiei, cookier)
SK {AUTH}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

B
ob

10 Michael Nüsken

3.7. Main mode, pre-shared secret.

A
li
ce

SAi
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SAr
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

KEi, Ni
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

KEr, Nr
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
SK = f(secret, gab,Ni,Nr, cookiei, cookier)

SK {IDi,AUTH}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SK {IDr,AUTH}
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B
ob

3.8. Aggressive mode, pre-shared secret.

A
li
ce

SAi, KEi, Ni, IDi
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SAr, KEr, Nr, IDr, AUTH
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

AUTH
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
SK = f(secret, gab,Ni,Nr, cookiei, cookier)

B
ob

Michael Nüsken

b-it, Bonn, Germany

nuesken
Typewritten Text
http://www.iana.org/assignments/ikev2-parameters/ikev2-parameters.xml

	img010-020.pdf
	img010
	img011
	img012
	img014
	img015
	img016
	img017
	img018
	img019

