
Co
se

C

b-it

C
om

pu
te

r

S
e

C
u
ri

ty

The art of cryptography: Lattices and cryptography,
summer 2013

PROF. DR. JOACHIM VON ZUR GATHEN, DR. DANIEL LOEBENBERGER

1. Exercise sheet
Hand in solutions until Sunday, 21 April 2013, 23:59h.

Reminder.

◦ For the course we remind you of the following dates:

– Lectures: Monday and Thursday 13:00h-14:30h sharp, b-it bitmax.

– Tutorial: Monday 14:45h-16:15h, b-it bitmax.

◦ A word on the exercises. They are important. Of course, you know that.
In order to be admitted to the exam it is necessary that you earned at least
50% of the credits. You need 50% of the marks on the final exam to pass the
course. If you do, then as an additional motivation, you will get a bonus for
the final exam if you attended the tutorial regularly and earned more than
70% or even more than 90% of the credits.

Note: From the following exercise on, we assume that you have a variant of the
basis reduction algorithm running on your computer. Any experiments that you
have to do in the sequel will need such a library. It is highly advised that you use
C/C++ in the future. If you are not feeling comfortable using this language, you
will have use your own implementation or you will have to search on your own
for an optimized basis reduction library for the language you have in mind.

Exercise 1.1 (NTL: A Library for doing Number Theory). (5+5 points)

NTL is a high-performance, portable C/C++ library providing data structures and
algorithms for manipulating signed, arbitrary length integers, and for vectors, ma-
trices, and polynomials over the integers and over finite fields. It has a highly
optimized built in basis reduction algorithm that we will employ frequently for
the rest of the lecture. To start, install NTL on your computer and get familar with
the NTL-API. Hints how to install NTL and details on the API can be found on
http://www.shoup.net/ntl/doc/tour.html. Now run the code lll.cpp
from the course page. To compile it, call for example under UNIX (or Mac OS
X) the compiler in the following way: g++ -o lll lll.cpp -lntl -lm. You
might have to include the headers using the −I flag and the library using the −L
flag. Details on that can be found in the man page of g++. Consider now the lattice
spanned by the matrix (written in row notation)





1 10 101
2 12 121
3 13 131



 .

(i) Hand in the output of the supplied program. 5

(ii) Interpret the result. +5



Co
se

C

b-it

C
om

pu
te

r

S
e

C
u
ri

ty

2 Prof. Dr. Joachim von zur Gathen, Dr. Daniel Loebenberger

Exercise 1.2 (The subset sum cryptosystem). (6 points)

In the lecture we studied the subset sum cryptosystem. Let m = 437 and r = 204.
Bob’s private key is s = (2, 6, 10, 26, 68, 161).

(i) Compute Bob’s public key t.2

Now Alice wants to send the string x = (0, 1, 0, 1, 1, 0).

(ii) Encrypt x with Bob’s public key obtaining y.1

(iii) Describe in detail how Bob will decrypt the encrypted message y and do the3
decryption.

Exercise 1.3 (Breaking the subset sum cryptosystem). (27+10 points)

Goal of this exercise is to implement the subset sum cryptosystem and the algo-
rithm breaking it.

(i) Implement the subset sum cryptosystem in a programming language of your10
choice and hand in the source code. You will need to implement three func-
tions:

Algorithm. Generate Key Pair.

Input: A positive integer n.
Output: The private key (s,m, r) and the public key t. The private key con-

sists of a superincreasing sequence s = (s1, . . . , sn) with s1 = 1, si ∈
]Si, 2Si] for i > 1, a value m ∈ ]Sn+1, 2Sn+1] where Si =

∑

j<i sj
and a value r ∈ N with gcd(r,m) = 1. The public key is a sequence
t = (rs1 mod m, . . . , rsn mod m).

Algorithm. Encrypt.

Input: A message x ∈ {0, 1}n. The public key t.
Output: The encrypted message y =

∑

i≤n xiti.

Algorithm. Decrypt.

Input: A message y ∈ N. The private key (s,m, r).
Output: The decrypted message x.

In the lecture we have seen an algorithm that computes (sometimes) a solution to
the subset sum problem.

(ii) Implement the lattice-based solver from the lecture in a programming lan-10
guage of your choice. Hand in the source code.

(iii) Assume you have intercepted the message y = 1147. Bob’s public key is2

s = (465, 441, 417, 241, 330, 251).

Compute the message x ∈ {0, 1}6 that Alice sent to Bob using your algo-
rithm.

(iv) Let n = 6 and C = 512. Run 100 examples with t1, . . . , t6 ←−− {1, . . . , C} and5
x ←−− {0, 1}6 \ {(0, . . . , 0)}. How often did your algorithm not succeed in
finding x?

(v) Experiment with other values of C, maybe much larger ones. You may also+10
want to increase the message length beyond 6 bits. What do you observe?
Can you explain the behavior?


