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Cryptanalysis: It was used to break many cryptosystems. In the
1980’s, the first generation of public-key
cryptosystems besides RSA, the subset sum system,
was obliterated by this attack. For many types of
new systems, one has to consider carefully potential
attacks using this methodology.

Security reductions: If a system like the Diffie-Hellman key
exchange or RSA encryption is secure, it is not clear
that partial information like the leading bits of a
Diffie-Hellman key or of a prime factor an in RSA
modulus are also secure. But lattice technology
provides proofs that this is indeed the case.

Cryptography: Since 1996, the method has been used to devise
cryptosystems that have (provably under a hardness
assumption) a desirable property that no previous
system had: breaking an “average instance” is as
difficult as breaking a “hardest instance”.
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Definition 1. Let a1, . . . , aℓ ∈ R
n be linearly independent over

R. Then

L =
∑

1≤i≤ℓ

Zai = {
∑

1≤i≤ℓ

riai : r1, . . . , rℓ ∈ Z}

is the lattice (or Z-module) generated by a1, . . . , aℓ. These vectors
form a basis of L.

Definition 2. Let L be a lattice generated by the rows of the
matrix A ∈ R

ℓ×n. The norm of L is |L| = det(AAT )1/2 ∈ R.
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Figure: The lattice in R
2 generated by (12, 2) (red) and (13, 4) (blue).
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Example 3. We let ℓ = n = 2, a1 = (12, 2), a2 = (13, 4) and
L = Za1 + Za2. The figure shows some lattice points of L near
the origin of the plane R

2. The norm of L is

|L| =
∣

∣

∣

∣

det

(

12 2
13 4

)∣

∣

∣

∣

= 22

and equals the area of the gray parallelogram.
We have 22 ≤ ||a1|| · ||a2|| = 74

√
5 ≈ 165.47. Another basis of L

is b1 = (1, 2) and b2 = (11, 0) = 2a1 − a2, and b1 is a “shortest”
vector in L. We have 22 ≤ ||b1|| · ||b2|| = 11

√
5.

12/17



Definition 4. Let L ⊂ R
n be an ℓ-dimensional lattice and

1 ≤ i ≤ ℓ. The ith successive minimum λi(L) is the smallest real
number so that there exist i linearly independent vectors in L, all
of length at most λi(L).

Definition 5. Let b1, . . . , bℓ ∈ R
n be linearly independent and

(b∗1, . . . , b
∗
ℓ) the corresponding Gram-Schmidt orthogonal basis.

Then (b1, . . . , bℓ) is reduced if ‖b∗i ‖2 ≤ 2‖b∗i+1‖2 for 1 ≤ i < ℓ.
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Theorem 6. Let b1, . . . , bℓ ∈ R
n be a reduced basis of the lattice

L and λ1(L) the length of a shortest nonzero vector x in L. Then
‖b1‖ ≤ 2(ℓ−1)/2 · λ1(L).

Corollary 7. Given linearly independent vectors a1, . . . , aℓ ∈ Z
n

whose norm has bit length at most m, the basis reduction
algorithm computes a reduced basis b1, . . . , bℓ of L =

∑

1≤i≤ℓ Zai.
Furthermore, x = b1, is a “short” nonzero vector in L with

‖x‖ ≤ 2(ℓ−1)/2 min{‖y‖ : 0 6= y ∈ L}.

It uses O(n6m2) bit operations.
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The subset sum problem seeks to answer the following.

Given t0, t1, . . . , tn ∈ N, are there x1, . . . , xn ∈
{0, 1} with t0 =

∑

1≤i≤n tixi?

Example 8. The input (1215, 366, 385, 392, 401, 422, 437)
means that we ask whether there exist x1, . . . , x6 ∈ {0, 1} such
that 366x1 + 385x2 + 392x3 + 401x4 + 422x5 + 437x6 = 1215.
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Example 9. Alice takes m = 1009 and r = 621, her secret
s1, . . . , s6 as follows, and publishes t1, . . . , t6.

i si ti
1 2 233
2 3 854
3 7 311
4 15 234
5 31 80
6 60 936

If Bob wants to send the bit string x = 010110 to Alice, he
encrypts this as t0 = t2 + t4 + t5 = 1168. Alice computes
s0 = r−1t0 = 13 · 1168 = 49 inZ1009, and solves the easy subset
sum problem 49 = 3 + 15 + 31, from which she recovers x.
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We start by connecting subset sum problems to short vector
problems. For Example 8, we consider the lattice L ⊆ Z

7

generated by the rows of the matrix





















1215 0 0 0 0 0 0
−366 1 0 0 0 0 0
−385 0 1 0 0 0 0
−392 0 0 1 0 0 0
−401 0 0 0 1 0 0
−422 0 0 0 0 1 0
−437 0 0 0 0 0 1





















∈ Z
7×7.

7/17



Basis reduction then computes the short vector
y = (0, 0, 0, 1, 1, 1, 0) ∈ L, and indeed
1215 = 366 · 0 + 385 · 0 + 392 · 1 + 401 · 1 + 422 · 1 + 437 · 0. Let
ai be the ith row vector, for 0 ≤ i ≤ 6, so that
a6 = (−437, 0, 0, 0, 0, 0, 1) as an example, x0 = 1, and
x = (0, 0, 1, 1, 1, 0) ∈ {0, 1}6 the solution vector. Then
y =

∑

0≤i≤6 xiai. Thus basis reduction solves this particular
subset sum problem.
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Algorithm 10. Short vectors for subset sums.

Input: Positive integers t0, t1, . . . , tn.
Output: (x1, . . . , xn) ∈ Z

n or “failure”.

1. Let M = ⌈2n/2n1/2⌉+ 1.

2. If t0 <
∑

1≤i≤n ti/2 then t0 ←−
∑

1≤i≤n ti − t0.

3. For 0 ≤ i ≤ n, let ai ∈ Z
n+1 be the ith row of the matrix















t0M 0 0 · · · 0
−t1M 1 0 · · · 0
−t2M 0 1 · · · 0

...
...

...
. . .

...

−tnM 0 0 · · · 1















∈ Z
(n+1)×(n+1).

4. Let L ⊆ Z
n+1 be the lattice generated by a0, . . . , an. Run the basis

reduction on this basis to receive a short nonzero vector

y = (y0, . . . , yn) ∈ L.

5. If y0 = 0 and there is some δ ∈ ±1 with δy ∈ {0, 1}n+1, then

x←







(1− δy1, . . . , 1− δyn) if the condition in step 2 is satis-

fied for the input t,
(δy1, . . . , δyn) otherwise.

else return “failure”.

6. Return x. 5/17



We consider the following set of solvable subset sum problems:

E = {(t0, . . . , tn) ∈ Z
n+1 : ∃x ∈ {0, 1}n t0 =

∑

1≤i≤n

tixi > 0

and 1 ≤ ti ≤ C for 1 ≤ i ≤ n}.

Theorem 11. Let ǫ > 0, n ≥ 4, let C ≥ ǫ−12n(n+log2 n+5)/2 be
an integer, and consider inputs t = (t0, t1, . . . , tn) ∈ E to
Algorithm 10, where (t1, . . . , tn) is chosen uniformly at random in
T = {1, . . . , C}n. Then the algorithm correctly returns a solution
x to the subset sum problem t with probability at least 1− ǫ.
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Example 12. For n = 6 and ǫ = 1/10, we can take
C = 36238786559. We ran 100 examples with
(t1, . . . , t6)←− T = {1, . . . , C}6 and x←− {0, 1}6 \ {(0, . . . , 0)},
and the algorithm returned x in all cases.
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The density δ(x) of a subset sum problem t = (t0, . . . , tn) is

δ(t) =
n

max1≤i≤n{log2 ti}
,

assuming that ti ≥ 2 for some i.
The subset sum cryptosystem encrypts n bits x1, . . . , xn into the
single number t0 =

∑

1≤i≤n tixi, whose bit length is on average
about max1≤i≤n{log2 ti}. Thus δ(t) is roughly the information rate

length of plaintext

length of ciphertext
.
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When we take ε to be a constant, we can interpret Theorem 11 as
saying that Algorithm 10 solves almost all subset sum problems t
with

δ(t) ≤ 2

n
.

In practice, the algorithm performs much better, and seems to
solve most subset sum problems with

δ(t) < 0.645.
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Example 13. The three examples in the text have the following
densities.

n max{log2 ti} δ(t)

Example 8 6 log2 437 ≈ 8.771 0.684
Example 9, ti 6 log2 60 ≈ 5.907 1.016
Example 9, si 6 log2 936 ≈ 9.870 0.608
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