The art of cryptography, summer 2013 Lattices and cryptography

Prof. Dr. Joachim von zur Gathen

Cryptanalysis: It was used to break many cryptosystems. In the 1980's, the first generation of public-key cryptosystems besides RSA, the subset sum system, was obliterated by this attack. For many types of new systems, one has to consider carefully potential attacks using this methodology.
Security reductions: If a system like the Diffie-Hellman key exchange or RSA encryption is secure, it is not clear that partial information like the leading bits of a Diffie-Hellman key or of a prime factor an in RSA modulus are also secure. But lattice technology provides proofs that this is indeed the case.
Cryptography: Since 1996, the method has been used to devise cryptosystems that have (provably under a hardness assumption) a desirable property that no previous system had: breaking an "average instance" is as difficult as breaking a "hardest instance".

Definition 1. Let $a_{1}, \ldots, a_{\ell} \in \mathbb{R}^{n}$ be linearly independent over \mathbb{R}. Then

$$
L=\sum_{1 \leq i \leq \ell} \mathbb{Z} a_{i}=\left\{\sum_{1 \leq i \leq \ell} r_{i} a_{i}: r_{1}, \ldots, r_{\ell} \in \mathbb{Z}\right\}
$$

is the lattice (or \mathbb{Z}-module) generated by a_{1}, \ldots, a_{ℓ}. These vectors form a basis of L.

Definition 2. Let L be a lattice generated by the rows of the matrix $A \in \mathbb{R}^{\ell \times n}$. The norm of L is $|L|=\operatorname{det}\left(A A^{T}\right)^{1 / 2} \in \mathbb{R}$.

Definition 1. Let $a_{1}, \ldots, a_{\ell} \in \mathbb{R}^{n}$ be linearly independent over \mathbb{R}. Then

$$
L=\sum_{1 \leq i \leq \ell} \mathbb{Z} a_{i}=\left\{\sum_{1 \leq i \leq \ell} r_{i} a_{i}: r_{1}, \ldots, r_{\ell} \in \mathbb{Z}\right\}
$$

is the lattice (or \mathbb{Z}-module) generated by a_{1}, \ldots, a_{ℓ}. These vectors form a basis of L.

Definition 2. Let L be a lattice generated by the rows of the matrix $A \in \mathbb{R}^{\ell \times n}$. The norm of L is $|L|=\operatorname{det}\left(A A^{T}\right)^{1 / 2} \in \mathbb{R}$.

Figure: The lattice in \mathbb{R}^{2} generated by $(12,2)(r e d)$ and $(13,4)$ (blue).

Example 3. We let $\ell=n=2, a_{1}=(12,2), a_{2}=(13,4)$ and $L=\mathbb{Z} a_{1}+\mathbb{Z} a_{2}$. The figure shows some lattice points of L near the origin of the plane \mathbb{R}^{2}. The norm of L is

$$
|L|=\left|\operatorname{det}\left(\begin{array}{ll}
12 & 2 \\
13 & 4
\end{array}\right)\right|=22
$$

and equals the area of the gray parallelogram.
We have $22 \leq\left\|a_{1}\right\| \cdot\left\|a_{2}\right\|=74 \sqrt{5} \approx 165.47$. Another basis of L is $b_{1}=(1,2)$ and $b_{2}=(11,0)=2 a_{1}-a_{2}$, and b_{1} is a "shortest" vector in L. We have $22 \leq\left\|b_{1}\right\| \cdot\left\|b_{2}\right\|=11 \sqrt{5}$.

Definition 4. Let $L \subset \mathbb{R}^{n}$ be an ℓ-dimensional lattice and $1 \leq i \leq \ell$. The i th successive minimum $\lambda_{i}(L)$ is the smallest real number so that there exist i linearly independent vectors in L, all of length at most $\lambda_{i}(L)$.

Definition 4. Let $L \subset \mathbb{R}^{n}$ be an ℓ-dimensional lattice and $1 \leq i \leq \ell$. The i th successive minimum $\lambda_{i}(L)$ is the smallest real number so that there exist i linearly independent vectors in L, all of length at most $\lambda_{i}(L)$.

Definition 5. Let $b_{1}, \ldots, b_{\ell} \in \mathbb{R}^{n}$ be linearly independent and $\left(b_{1}^{*}, \ldots, b_{\ell}^{*}\right)$ the corresponding Gram-Schmidt orthogonal basis. Then $\left(b_{1}, \ldots, b_{\ell}\right)$ is reduced if $\left\|b_{i}^{*}\right\|^{2} \leq 2\left\|b_{i+1}^{*}\right\|^{2}$ for $1 \leq i<\ell$.

THEOREM 6. Let $b_{1}, \ldots, b_{\ell} \in \mathbb{R}^{n}$ be a reduced basis of the lattice L and $\lambda_{1}(L)$ the length of a shortest nonzero vector x in L. Then $\left\|b_{1}\right\| \leq 2^{(\ell-1) / 2} \cdot \lambda_{1}(L)$.

Corollary 7. Given linearly independent vectors $a_{1}, \ldots, a_{\ell} \in \mathbb{Z}^{n}$ whose norm has bit length at most m, the basis reduction algorithm computes a reduced basis b_{1}, \ldots, b_{ℓ} of $L=\sum_{1}$ Furthermore, $x=b_{1}$, is a "short" nonzero vector in L with

$$
\|x\| \leq 2^{(e-1) / 2} \min \{\|y\|: 0 \neq y \in L\} .
$$

It uses $O\left(n^{6} m^{2}\right)$ bit operations.

Theorem 6. Let $b_{1}, \ldots, b_{\ell} \in \mathbb{R}^{n}$ be a reduced basis of the lattice L and $\lambda_{1}(L)$ the length of a shortest nonzero vector x in L. Then $\left\|b_{1}\right\| \leq 2^{(\ell-1) / 2} \cdot \lambda_{1}(L)$.

Corollary 7. Given linearly independent vectors $a_{1}, \ldots, a_{\ell} \in \mathbb{Z}^{n}$ whose norm has bit length at most m, the basis reduction algorithm computes a reduced basis b_{1}, \ldots, b_{ℓ} of $L=\sum_{1 \leq i \leq \ell} \mathbb{Z} a_{i}$. Furthermore, $x=b_{1}$, is a "short" nonzero vector in L with

$$
\|x\| \leq 2^{(\ell-1) / 2} \min \{\|y\|: 0 \neq y \in L\}
$$

It uses $O\left(n^{6} m^{2}\right)$ bit operations.

The subset sum problem seeks to answer the following.
Given $t_{0}, t_{1}, \ldots, t_{n} \in \mathbb{N}$, are there $x_{1}, \ldots, x_{n} \in$ $\{0,1\}$ with $t_{0}=\sum_{1 \leq i \leq n} t_{i} x_{i}$?

Example 8. The input ($1215,366,385,392,401,422,437)$ means that we ask whether there exist $x_{1}, \ldots, x_{6} \in\{0,1\}$ such that $366 x_{1}+385 x_{2}+392 x_{3}+401 x_{4}+422 x_{5}+437 x_{6}=1215$.

Example 9. Alice takes $m=1009$ and $r=621$, her secret s_{1}, \ldots, s_{6} as follows, and publishes t_{1}, \ldots, t_{6}.

i	s_{i}	t_{i}
1	2	233
2	3	854
3	7	311
4	15	234
5	31	80
6	60	936

If Bob wants to send the bit string $x=010110$ to Alice, he encrypts this as $t_{0}=t_{2}+t_{4}+t_{5}=1168$. Alice computes $s_{0}=r^{-1} t_{0}=13 \cdot 1168=49$ in \mathbb{Z}_{1009}, and solves the easy subset sum problem $49=3+15+31$, from which she recovers x.

We start by connecting subset sum problems to short vector problems. For Example 8, we consider the lattice $L \subseteq \mathbb{Z}^{7}$ generated by the rows of the matrix

$$
\left(\begin{array}{ccccccc}
1215 & 0 & 0 & 0 & 0 & 0 & 0 \\
-366 & 1 & 0 & 0 & 0 & 0 & 0 \\
-385 & 0 & 1 & 0 & 0 & 0 & 0 \\
-392 & 0 & 0 & 1 & 0 & 0 & 0 \\
-401 & 0 & 0 & 0 & 1 & 0 & 0 \\
-422 & 0 & 0 & 0 & 0 & 1 & 0 \\
-437 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \in \mathbb{Z}^{7 \times 7}
$$

Basis reduction then computes the short vector $y=(0,0,0,1,1,1,0) \in L$, and indeed $1215=366 \cdot 0+385 \cdot 0+392 \cdot 1+401 \cdot 1+422 \cdot 1+437 \cdot 0$. Let a_{i} be the i th row vector, for $0 \leq i \leq 6$, so that $a_{6}=(-437,0,0,0,0,0,1)$ as an example, $x_{0}=1$, and $x=(0,0,1,1,1,0) \in\{0,1\}^{6}$ the solution vector. Then $y=\sum_{0 \leq i \leq 6} x_{i} a_{i}$. Thus basis reduction solves this particular subset sum problem.

Algorithm 10. Short vectors for subset sums.
Input: Positive integers $t_{0}, t_{1}, \ldots, t_{n}$.
Output: $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}$ or "failure".

1. Let $M=\left\lceil 2^{n / 2} n^{1 / 2}\right\rceil+1$.
2. If $t_{0}<\sum_{1 \leq i \leq n} t_{i} / 2$ then $t_{0} \longleftarrow \sum_{1 \leq i \leq n} t_{i}-t_{0}$.
3. For $0 \leq i \leq n$, let $a_{i} \in \mathbb{Z}^{n+1}$ be the i th row of the matrix

$$
\left(\begin{array}{ccccc}
t_{0} M & 0 & 0 & \cdots & 0 \\
-t_{1} M & 1 & 0 & \cdots & 0 \\
-t_{2} M & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-t_{n} M & 0 & 0 & \cdots & 1
\end{array}\right) \in \mathbb{Z}^{(n+1) \times(n+1)}
$$

4. Let $L \subseteq \mathbb{Z}^{n+1}$ be the lattice generated by a_{0}, \ldots, a_{n}. Run the basis reduction on this basis to receive a short nonzero vector $y=\left(y_{0}, \ldots, y_{n}\right) \in L$.
5. If $y_{0}=0$ and there is some $\delta \in \pm 1$ with $\delta y \in\{0,1\}^{n+1}$, then

$$
x \leftarrow \begin{cases}\left(1-\delta y_{1}, \ldots, 1-\delta y_{n}\right) & \text { if the condition in step } 2 \text { is satis- } \\ \left(\delta y_{1}, \ldots, \delta y_{n}\right) & \text { fied for the input } t\end{cases}
$$

else return "failure".
6. Return x.

We consider the following set of solvable subset sum problems:

$$
\begin{array}{r}
E=\left\{\left(t_{0}, \ldots, t_{n}\right) \in \mathbb{Z}^{n+1}: \exists x \in\{0,1\}^{n} t_{0}=\sum_{1 \leq i \leq n} t_{i} x_{i}>0\right. \\
\text { and } \left.1 \leq t_{i} \leq C \text { for } 1 \leq i \leq n\right\} .
\end{array}
$$

Theorem 11. Let $\epsilon>0, n \geq 4$, let $C \geq \epsilon^{-1} 2^{n\left(n+\log _{2} n+5\right) / 2}$ be an integer, and consider inputs $t=\left(t_{0}, t_{1}, \ldots, t_{n}\right) \in E$ to Algorithm 10, where $\left(t_{1}, \ldots, t_{n}\right)$ is chosen uniformly at random in $T=\{1, \ldots, C\}^{n}$. Then the algorithm correctly returns a solution x to the subset sum problem t with probability at least $1-\epsilon$.

Example 12. For $n=6$ and $\epsilon=1 / 10$, we can take $C=36238786559$. We ran 100 examples with $\left(t_{1}, \ldots, t_{6}\right) T=\{1, \ldots, C\}^{6}$ and $x \longleftarrow\{0,1\}^{6} \backslash\{(0, \ldots, 0)\}$, and the algorithm returned x in all cases.

The density $\delta(x)$ of a subset sum problem $t=\left(t_{0}, \ldots, t_{n}\right)$ is

$$
\delta(t)=\frac{n}{\max _{1 \leq i \leq n}\left\{\log _{2} t_{i}\right\}},
$$

assuming that $t_{i} \geq 2$ for some i.
The subset sum cryptosystem encrypts n bits x_{1}, \ldots, x_{n} into the single number $t_{0}=\sum_{1 \leq i \leq n} t_{i} x_{i}$, whose bit length is on average about $\max _{1 \leq i \leq n}\left\{\log _{2} t_{i}\right\}$. Thus $\delta(t)$ is roughly the information rate

$$
\frac{\text { length of plaintext }}{\text { length of ciphertext }}
$$

When we take ε to be a constant, we can interpret Theorem 11 as saying that Algorithm 10 solves almost all subset sum problems t with

$$
\delta(t) \leq \frac{2}{n}
$$

In practice, the algorithm performs much better, and seems to solve most subset sum problems with

$$
\delta(t)<0.645
$$

Example 13. The three examples in the text have the following densities.

	n	$\max \left\{\log _{2} t_{i}\right\}$	$\delta(t)$
Example 8	6	$\log _{2} 437 \approx 8.771$	0.684
Example 9, t_{i}	6	$\log _{2} 60 \approx 5.907$	1.016
Example 9, s_{i}	6	$\log _{2} 936 \approx 9.870$	0.608

