The art of cryptography, summer 2013 Lattices and cryptography

Prof. Dr. Joachim von zur Gathen

Cryptanalysis: It was used to break many cryptosystems. In the 1980's, the first generation of public-key cryptosystems besides RSA, the *subset sum* system, was obliterated by this attack. For many types of new systems, one has to consider carefully potential attacks using this methodology.

Security reductions: If a system like the Diffie-Hellman key exchange or RSA encryption is secure, it is not clear that partial information like the leading bits of a Diffie-Hellman key or of a prime factor an in RSA modulus are also secure. But lattice technology provides proofs that this is indeed the case.

Cryptography: Since 1996, the method has been used to devise cryptosystems that have (provably under a hardness assumption) a desirable property that no previous system had: breaking an "average instance" is as difficult as breaking a "hardest instance".

DEFINITION 1. Let $a_1, \ldots, a_\ell \in \mathbb{R}^n$ be linearly independent over \mathbb{R} . Then

$$L = \sum_{1 \le i \le \ell} \mathbb{Z}a_i = \{\sum_{1 \le i \le \ell} r_i a_i \colon r_1, \dots, r_\ell \in \mathbb{Z}\}$$

is the lattice (or \mathbb{Z} -module) generated by a_1, \ldots, a_ℓ . These vectors form a basis of L.

DEFINITION 2. Let L be a lattice generated by the rows of the matrix $A \in \mathbb{R}^{\ell \times n}$. The norm of L is $|L| = \det(AA^T)^{1/2} \in \mathbb{R}$.

DEFINITION 1. Let $a_1, \ldots, a_\ell \in \mathbb{R}^n$ be linearly independent over \mathbb{R} . Then

$$L = \sum_{1 \le i \le \ell} \mathbb{Z}a_i = \{\sum_{1 \le i \le \ell} r_i a_i \colon r_1, \dots, r_\ell \in \mathbb{Z}\}$$

is the lattice (or \mathbb{Z} -module) generated by a_1, \ldots, a_ℓ . These vectors form a basis of L.

DEFINITION 2. Let L be a lattice generated by the rows of the matrix $A \in \mathbb{R}^{\ell \times n}$. The norm of L is $|L| = \det(AA^T)^{1/2} \in \mathbb{R}$.

Figure: The lattice in $\mathbb{R}^{\,2}$ generated by (12,2) (red) and (13,4) (blue).

EXAMPLE 3. We let $\ell = n = 2$, $a_1 = (12, 2)$, $a_2 = (13, 4)$ and $L = \mathbb{Z}a_1 + \mathbb{Z}a_2$. The figure shows some lattice points of L near the origin of the plane \mathbb{R}^2 . The norm of L is

$$|L| = \left| \det \left(\begin{array}{cc} 12 & 2\\ 13 & 4 \end{array} \right) \right| = 22$$

and equals the area of the gray parallelogram.

We have $22 \le ||a_1|| \cdot ||a_2|| = 74\sqrt{5} \approx 165.47$. Another basis of L is $b_1 = (1, 2)$ and $b_2 = (11, 0) = 2a_1 - a_2$, and b_1 is a "shortest" vector in L. We have $22 \le ||b_1|| \cdot ||b_2|| = 11\sqrt{5}$.

DEFINITION 4. Let $L \subset \mathbb{R}^n$ be an ℓ -dimensional lattice and $1 \leq i \leq \ell$. The *i*th successive minimum $\lambda_i(L)$ is the smallest real number so that there exist *i* linearly independent vectors in *L*, all of length at most $\lambda_i(L)$.

DEFINITION 5. Let $b_1, \ldots, b_\ell \in \mathbb{R}^n$ be linearly independent and $(b_1^*, \ldots, b_\ell^*)$ the corresponding Gram-Schmidt orthogonal basis. Then (b_1, \ldots, b_ℓ) is reduced if $\|b_i^*\|^2 \leq 2\|b_{i+1}^*\|^2$ for $1 \leq i < \ell$. DEFINITION 4. Let $L \subset \mathbb{R}^n$ be an ℓ -dimensional lattice and $1 \leq i \leq \ell$. The *i*th successive minimum $\lambda_i(L)$ is the smallest real number so that there exist *i* linearly independent vectors in *L*, all of length at most $\lambda_i(L)$.

DEFINITION 5. Let $b_1, \ldots, b_\ell \in \mathbb{R}^n$ be linearly independent and $(b_1^*, \ldots, b_\ell^*)$ the corresponding Gram-Schmidt orthogonal basis. Then (b_1, \ldots, b_ℓ) is reduced if $\|b_i^*\|^2 \leq 2\|b_{i+1}^*\|^2$ for $1 \leq i < \ell$. THEOREM 6. Let $b_1, \ldots, b_\ell \in \mathbb{R}^n$ be a reduced basis of the lattice L and $\lambda_1(L)$ the length of a shortest nonzero vector x in L. Then $\|b_1\| \leq 2^{(\ell-1)/2} \cdot \lambda_1(L)$.

COROLLARY 7. Given linearly independent vectors $a_1, \ldots, a_\ell \in \mathbb{Z}^n$ whose norm has bit length at most m, the basis reduction algorithm computes a reduced basis b_1, \ldots, b_ℓ of $L = \sum_{1 \le i \le \ell} \mathbb{Z}a_i$. Furthermore, $x = b_1$, is a "short" nonzero vector in L with

$$||x|| \le 2^{(\ell-1)/2} \min\{||y|| \colon 0 \ne y \in L\}.$$

It uses $O(n^6m^2)$ bit operations.

THEOREM 6. Let $b_1, \ldots, b_\ell \in \mathbb{R}^n$ be a reduced basis of the lattice L and $\lambda_1(L)$ the length of a shortest nonzero vector x in L. Then $||b_1|| \leq 2^{(\ell-1)/2} \cdot \lambda_1(L)$.

COROLLARY 7. Given linearly independent vectors $a_1, \ldots, a_\ell \in \mathbb{Z}^n$ whose norm has bit length at most m, the basis reduction algorithm computes a reduced basis b_1, \ldots, b_ℓ of $L = \sum_{1 \le i \le \ell} \mathbb{Z}a_i$. Furthermore, $x = b_1$, is a "short" nonzero vector in L with

$$||x|| \le 2^{(\ell-1)/2} \min\{||y|| \colon 0 \ne y \in L\}.$$

It uses $O(n^6m^2)$ bit operations.

The subset sum problem seeks to answer the following.

Given
$$t_0, t_1, \ldots, t_n \in \mathbb{N}$$
, are there $x_1, \ldots, x_n \in \{0, 1\}$ with $t_0 = \sum_{1 \le i \le n} t_i x_i$?

EXAMPLE 8. The input (1215, 366, 385, 392, 401, 422, 437) means that we ask whether there exist $x_1, \ldots, x_6 \in \{0, 1\}$ such that $366x_1 + 385x_2 + 392x_3 + 401x_4 + 422x_5 + 437x_6 = 1215$.

EXAMPLE 9. Alice takes m = 1009 and r = 621, her secret s_1, \ldots, s_6 as follows, and publishes t_1, \ldots, t_6 .

i	s_i	t_i
1	2	233
2	3	854
3	7	311
4	15	234
5	31	80
6	60	936

If Bob wants to send the bit string x = 010110 to Alice, he encrypts this as $t_0 = t_2 + t_4 + t_5 = 1168$. Alice computes $s_0 = r^{-1}t_0 = 13 \cdot 1168 = 49$ in \mathbb{Z}_{1009} , and solves the easy subset sum problem 49 = 3 + 15 + 31, from which she recovers x.

We start by connecting subset sum problems to short vector problems. For Example 8, we consider the lattice $L \subseteq \mathbb{Z}^7$ generated by the rows of the matrix

$$\begin{pmatrix} 1215 & 0 & 0 & 0 & 0 & 0 & 0 \\ -366 & 1 & 0 & 0 & 0 & 0 & 0 \\ -385 & 0 & 1 & 0 & 0 & 0 & 0 \\ -392 & 0 & 0 & 1 & 0 & 0 & 0 \\ -401 & 0 & 0 & 0 & 1 & 0 & 0 \\ -422 & 0 & 0 & 0 & 0 & 1 & 0 \\ -437 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \in \mathbb{Z}^{7 \times 7}.$$

Basis reduction then computes the short vector $y = (0, 0, 0, 1, 1, 1, 0) \in L$, and indeed $1215 = 366 \cdot 0 + 385 \cdot 0 + 392 \cdot 1 + 401 \cdot 1 + 422 \cdot 1 + 437 \cdot 0$. Let a_i be the *i*th row vector, for $0 \le i \le 6$, so that $a_6 = (-437, 0, 0, 0, 0, 0, 1)$ as an example, $x_0 = 1$, and $x = (0, 0, 1, 1, 1, 0) \in \{0, 1\}^6$ the solution vector. Then $y = \sum_{0 \le i \le 6} x_i a_i$. Thus basis reduction solves this particular subset sum problem. ALGORITHM 10. Short vectors for subset sums. Input: Positive integers t_0, t_1, \ldots, t_n .

Output: $(x_1, \ldots, x_n) \in \mathbb{Z}^n$ or "failure".

1. Let
$$M = \lceil 2^{n/2} n^{1/2} \rceil + 1$$
.

2. If $t_0 < \sum_{1 \le i \le n} t_i/2$ then $t_0 \longleftarrow \sum_{1 \le i \le n} t_i - t_0$.

3. For $0 \leq i \leq n$, let $a_i \in \mathbb{Z}^{n+1}$ be the *i*th row of the matrix

$$\begin{pmatrix} t_0 M & 0 & 0 & \cdots & 0 \\ -t_1 M & 1 & 0 & \cdots & 0 \\ -t_2 M & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -t_n M & 0 & 0 & \cdots & 1 \end{pmatrix} \in \mathbb{Z}^{(n+1) \times (n+1)}.$$

- 4. Let $L \subseteq \mathbb{Z}^{n+1}$ be the lattice generated by a_0, \ldots, a_n . Run the basis reduction on this basis to receive a short nonzero vector $y = (y_0, \ldots, y_n) \in L$.
- 5. If $y_0 = 0$ and there is some $\delta \in \pm 1$ with $\delta y \in \{0,1\}^{n+1}$, then

$$x \leftarrow \begin{cases} (1 - \delta y_1, \dots, 1 - \delta y_n) \text{ if the condition in step 2 is satisfied for the input } t, \\ (\delta y_1, \dots, \delta y_n) & \text{otherwise.} \end{cases}$$

else return "failure".

6. Return x.

We consider the following set of solvable subset sum problems:

$$E = \{(t_0, \dots, t_n) \in \mathbb{Z}^{n+1} \colon \exists x \in \{0, 1\}^n \ t_0 = \sum_{1 \le i \le n} t_i x_i > 0$$

and $1 \le t_i \le C$ for $1 \le i \le n\}.$

THEOREM 11. Let $\epsilon > 0$, $n \ge 4$, let $C \ge \epsilon^{-1}2^{n(n+\log_2 n+5)/2}$ be an integer, and consider inputs $t = (t_0, t_1, \ldots, t_n) \in E$ to Algorithm 10, where (t_1, \ldots, t_n) is chosen uniformly at random in $T = \{1, \ldots, C\}^n$. Then the algorithm correctly returns a solution x to the subset sum problem t with probability at least $1 - \epsilon$. EXAMPLE 12. For n = 6 and $\epsilon = 1/10$, we can take C = 36238786559. We ran 100 examples with $(t_1, \ldots, t_6) \xleftarrow{\text{@P}} T = \{1, \ldots, C\}^6$ and $x \xleftarrow{\text{@P}} \{0, 1\}^6 \setminus \{(0, \ldots, 0)\}$, and the algorithm returned x in all cases.

The *density* $\delta(x)$ of a subset sum problem $t = (t_0, \ldots, t_n)$ is

$$\delta(t) = \frac{n}{\max_{1 \le i \le n} \{\log_2 t_i\}},$$

assuming that $t_i \geq 2$ for some *i*.

The subset sum cryptosystem encrypts n bits x_1, \ldots, x_n into the single number $t_0 = \sum_{1 \le i \le n} t_i x_i$, whose bit length is on average about $\max_{1 \le i \le n} \{ \log_2 t_i \}$. Thus $\delta(t)$ is roughly the information rate

length of plaintext length of ciphertext When we take ε to be a constant, we can interpret Theorem 11 as saying that Algorithm 10 solves almost all subset sum problems t with

$$\delta(t) \le \frac{2}{n}.$$

In practice, the algorithm performs much better, and seems to solve most subset sum problems with

 $\delta(t) < 0.645.$

 $\ensuremath{\operatorname{ExAMPLE}}\xspace$ 13. The three examples in the text have the following densities.

	n	$\max\{\log_2 t_i\}$	$\delta(t)$
Example 8	6	$\log_2 437 \approx 8.771$	0.684
Example 9, t_i	6	$\log_2 60 \approx 5.907$	1.016
Example 9, s_i	6	$\log_2 936 \approx 9.870$	0.608