The art of cryptography: Lattices and cryptography, summer 2013

Prof. Dr. Joachim von zur Gathen, Dr. Daniel Loebenberger

2. Exercise sheet

Hand in solutions until Sunday, 28 April 2013, 23:59h.

Exercise 2.1 (Transforming bases).
Let $A \in \mathbb{R}^{\ell \times n}$ be a basis of the lattice $L=\mathcal{L}(A)$. Express each of the following matrix operations on A as a left multiplication by a unimodular matrix $U \in \mathbb{Z}^{\ell \times \ell}$, i.e. an integer matrix with $\operatorname{det}(U)= \pm 1$:
(i) Swap the order of the rows of A,
(ii) Multiply a row by -1 ,
(iii) Add an integer multiple of a row to another row, i.e. set $a_{i} \leftarrow a_{i}+c a_{j}$ where $i \neq j$ and $c \in \mathbb{Z}$.
(iv) Show that any unimodular matrix can be expressed as a sequence of these three elementary integer row transformations.

Exercise 2.2 (Lattices and the gcd).
(8 points)
Assume you are given two integers $a, b \in \mathbb{N}$ and consider the lattice $L=\mathcal{L}(A)$ spanned by the basis

$$
A=\left[\begin{array}{ccc}
1 & 0 & \gamma a \\
0 & 1 & \gamma b
\end{array}\right]
$$

where $\gamma \in \mathbb{R}_{>1}$ is some large constant.
(i) Do some experiments with the lattice L : Select, say, 100 pairs (a, b) randomly, where a and b are at most $C=100$ and check for which values of γ the basis reduction algorithm yields always a basis of the form

$$
B=\left[\begin{array}{ccc}
x_{1} & x_{2} & 0 \\
s & t & \pm \gamma \operatorname{gcd}(a, b)
\end{array}\right]
$$

with $s a+t b= \pm \operatorname{gcd}(a, b)$.
(ii) Try also the values $C=500, C=1000$ and $C=5000$. Hand in a table of values of γ for which your experiment succeeded.

Exercise 2.3 (Linear congruential generators).
(17 points)
We consider the linear congruential generators with $x_{i}=\left(a x_{i-1}+b\right)$ rem m.
(i) Compute the pseudorandom sequence of numbers resulting from
(a) $m=10, a=3, b=2, x_{0}=1$ and
(b) $m=10, a=8, b=7, x_{0}=1$.

What do you observe?
(ii) You observe the sequence of numbers

$$
13,223,793,483,213,623,593, \ldots
$$

generated by a linear congruential generator. Find matching values of m, a and b.
How do you do this?
(iii) Consider $m=100, a=3, b=2, x_{0}=1$. Compute the result of the truncated linear congruential generator, which outputs the top half of the bits.
(iv) Implement the truncated linear congruential generator in a programming language of your choice. Also implement the non-truncated generator together with the algorithm breaking it.

