The art of cryptography, summer 2013 Lattices and cryptography

Prof. Dr. Joachim von zur Gathen

A further cryptanalytic use of basis reduction is to break certain pseudo-random number generators.

The most popular pseudorandom generators are the *linear* congruential pseudorandom generators. We have a modulus $m \in \mathbb{N}$, two integers s, t, a seed $x_0 \in \mathbb{N}$, and define

$$x_i = sx_{i-1} + t \text{ in } \mathbb{Z}_m \tag{1}$$

for $i \geq 1$.

In the generator (1), we have

$$\begin{aligned} x_i &= sx_{i-1} + t \text{ in } \mathbb{Z}_m, \\ x_{i+1} &= sx_i + t \text{ in } \mathbb{Z}_m. \end{aligned}$$

In order to eliminate s and t, we subtract and find

$$x_i - x_{i+1} = s(x_{i-1} - x_i) \text{ in } \mathbb{Z}_m.$$

Similarly we get

$$x_{i+1} - x_{i+2} = s(x_i - x_{i+1})$$
 in \mathbb{Z}_m .

Multiplying by appropriate quantities, we obtain

$$(x_i - x_{i+1})^2 = s(x_i - x_{i+1})(x_{i-1} - x_i)$$

= $(x_{i+1} - x_{i+2})(x_{i-1} - x_i)$ in \mathbb{Z}_m .

Thus from four consecutive values x_{i-1} , x_i , x_{i+1} , x_{i+2} we get a multiple

$$m' = (x_i - x_{i+1})^2 - (x_{i+1} - x_{i+2})(x_{i-1} - x_i)$$

of m.

If the required gcds are 1, then we can also compute guesses s' and t' for s and t, respectively. We can then compute the next values x_{i+3}, x_{i+4}, \ldots with these guesses and also observe the generator. Whenever a discrepancy occurs, we refine our guesses.

Instead of outputting all of x_i , we only use part of it, say the top half of its bits. More generally, we take an integer approximation parameter $\alpha \geq 1$ and for $i \geq 1$ output an α -approximation y_i to x_i with

$$|x_i - y_i| \le \alpha. \tag{2}$$

There are many such y_i , and we need a deterministic way of determining one of them. A natural choice is

$$y_i = \left\lfloor \frac{x_i}{\alpha} \right\rfloor \cdot \alpha; \tag{3}$$

We use the symmetric system of representatives modulo m

$$R_m = \{-\lfloor m/2 \rfloor, \dots, \lfloor (m-1)/2 \rfloor\},\$$

where $u \operatorname{srem} m \in R_m$ is the representative of $u \in \mathbb{Z}$ and $u = (u \operatorname{srem} m)$ in \mathbb{Z}_m . For an approximation parameter α and $u \in \mathbb{R}$, the α -vicinity of u is the set of integers whose distance from u is at most α :

$$V_{\alpha}(u) = \{ v \in \mathbb{Z} : |u - v| \le \alpha \}.$$
(4)

If u and $v \in \mathbb{Z}$ are positive k-bit integers and their first $k - \ell$ bits agree, then $|u - v| < 2^{\ell+1}$ and $v \in V_{2^{\ell+1}}(u)$. But due to carries, the reverse may be false. As an example, we take k = 6, $0 \le \ell \le 4$, $47 = (101111)_2 \in V_1(48) \subseteq V_{2^{\ell}}(48)$, and $48 = (110000)_2 \in V_1(47) \subseteq V_{2^{\ell}}(47)$. But the two (or more) leading bits of the 6-bit integers 47 and 48 do not agree.

We first show that key recovery from y_1, \ldots, y_n is usually possible when t = 0 in (1), which we now assume. Later, we reduce the general case to this one. The unknown integers x_1, \ldots, x_n satisfy

$$\begin{aligned} x_{i+1} &= sx_i \text{ in } \mathbb{Z}_m, \\ x_i &= s^{i-1}x_1 \text{ in } \mathbb{Z}_m, \text{ for } 1 \leq i \leq n. \end{aligned} \tag{5}$$

We consider the lattice $L = L_{s,m}$ spanned by the rows $a_1, \ldots, a_n \in \mathbb{Z}^n$ of the following $n \times n$ matrix:

$$A = \begin{pmatrix} m & 0 & 0 & \cdots & 0 \\ -s & 1 & 0 & \cdots & 0 \\ -s^2 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -s^{n-1} & 0 & 0 & \cdots & 1 \end{pmatrix}.$$
 (6)

As above, we write

$$z_i = x_i - y_i \text{ with } |z_i| \le \alpha \tag{7}$$

for each i. The z_i are unknown, and our task is to find them. (5) implies that

$$z_i = x_i - y_i = s^{i-1}(y_1 + z_1) - y_i$$

= $s^{i-1}z_1 + (s^{i-1}y_1 - y_i)$ in \mathbb{Z}_m .

This is a set of linear congruences, but in contrast to the homogeneous congruences (5), they are inhomogeneous with (known) constants

$$c_i = s^{i-1} y_1 - y_i. (8)$$

The lattice basis reduction works on n linearly independent vectors in \mathbb{Z}^n , and the first element b_1 of the reduced basis that it produces satisfies $||b_1|| \leq 2^{(n-1)/2}\lambda_1(L)$. We now need a generalization which gives a bound on each $||b_i||$ in terms of the successive minima $\lambda_i(L)$.

THEOREM 9. Let $L \subseteq \mathbb{R}^n$ be the lattice generated by its reduced basis $b_1, \ldots, b_\ell \in \mathbb{R}^{\ell \times n}$. Then $\|b_i\| \leq 2^{(\ell-1)/2} \cdot \lambda_i(L) \leq 2^{(\ell-1)/2} \lambda_\ell(L)$ for all $i \leq \ell$. LEMMA 10. There is at most one $z \in \mathbb{Z}^n$ with Az = c in \mathbb{Z}_m^n and

$$\|z\| \le \frac{m}{\lambda_n(L) \cdot (2^{(n+1)/2} + 1)}.$$
(11)

Given A, c, and m, one can determine in polynomial time whether such a z exists, and if so, compute it. Lemma 10 with c as in (8) and (7) imply that if

$$\alpha \le \frac{m}{\lambda_n(L) \cdot (2^{(n+1)/2} + 1)},\tag{12}$$

then the approximated generator with t = 0 can be broken. In (12), we have to analyze $\lambda_n(L)$. More specifically, we show an upper bound on $\lambda_n(L)$ for almost all $s \in \mathbb{Z}_m$.

To this end, we need a new tool, namely the *dual lattice* L^* of a lattice $L \subseteq \mathbb{R}^n$, which is defined as

$$L^* = \{ v \in \mathbb{R}^n \colon x \star v \in \mathbb{Z} \text{ for all } x \in L \}.$$

LEMMA 13. If $A = (a_1, \ldots, a_n) \in \mathbb{R}^{n \times n}$ is nonsingular and L the lattice generated by the rows of A, then $B = (A^T)^{-1} \in \mathbb{R}^{n \times n}$ is a basis of the dual lattice L^* .

We use the following fact without proof.

THEOREM 14. If λ_1^* is the length of a shortest nonzero vector in L^* , then $\lambda_1^* \cdot \lambda_n(L) \leq n^2$.

Recall:

$$A = \begin{pmatrix} m & 0 & 0 & \cdots & 0 \\ -s & 1 & 0 & \cdots & 0 \\ -s^2 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -s^{n-1} & 0 & 0 & \cdots & 1 \end{pmatrix}.$$

We next derive such a lower bound for most $s \in \mathbb{Z}_m$. For notational simplicity, we study the lattice $M = mL^*$ generated by the rows of

$$\left(\begin{array}{cccccc} 1 & s & s^2 & \cdots & s^{n-1} \\ 0 & m & 0 & \cdots & 0 \\ 0 & 0 & m & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & m \end{array}\right).$$

Consider, for a positive bound C < m, the set

$$E_C = \left\{ s \in \mathbb{Z} : \begin{array}{c} |s^i t \text{ srem } m| < C \text{ for } 0 \le i < n \text{ and} \\ \text{some } t \in \mathbb{Z} \text{ with } \gcd(t, m) = 1 \end{array} \right\}$$

of exceptional multipliers s. We will later assume m to be prime, so that the gcd condition corresponds to t srem $m \neq 0$. We have $\lambda_1(M) \geq C$ for all $s \in \mathbb{Z}_m \smallsetminus E_C$.

LEMMA 15. Let $n \ge 2$ and $s \in E_C$. Then there exist $d_1, \ldots, d_n \in \mathbb{Z}$, not all divisible by m, with

$$\sum_{1 \le i \le n} d_i s^{i-1} = 0 \text{ in } \mathbb{Z}_m,$$

$$|d_i| < (nC)^{1/(n-1)} + 2 \text{ for all } i \le n.$$
(16)

THEOREM 17. Let m be a k-bit prime, $n \ge 19$, $\epsilon > 0$, $2^{5n} \le m^{1-\epsilon}$,

$$\ell \le (1-\epsilon)(1-\frac{1}{n})(k-1) - 4n,$$

and $\alpha = 2^{\ell}$. Given s and m and α -approximations y_1, \ldots, y_n to the output of the generator (1) with t = 0, the generator can be broken in polynomial time for all but at most $m^{1-\epsilon}$ values $s \in \mathbb{Z}_m$. This result is almost optimal in the following sense. We think of k as being large and of ϵ as small. Then the upper bound on $\ell \approx \log_2 \alpha$ is roughly (1 - 1/n)k, so that the approximations y_i only have about k/n bits of information about x_i .

We have broken the generator when t = 0, and now reduce the general case of (1) with arbitrary t to this one. Let $x'_i = x_{i+1} - x_i$ for $i \ge 0$. Then

$$x'_{i+1} = x_{i+2} - x_{i+1} = (sx_{i+1} + t) - (sx_i + t) = s(x_{i+1} - x_i) = sx'_i \text{ in } \mathbb{Z}_m,$$

so that the sequence x'_1, x'_2, \ldots satisfies (1) with t = 0. Their approximations can be recovered from the original ones, as described below, with a loss of two bits.

We have to cope with the following issue. In the standard formulation (1), we take $\{0, 1, \ldots, m-1\}$ as representatives of \mathbb{Z}_m , and these integers are approximated in the generator. Thus instead of x'_i , we have to use

$$x_i^* = \begin{cases} x_i' = x_{i+1} - x_i & \text{if } x_{i+1} - x_i \ge 0, \\ x_i' + m = x_{i+1} - x_i + m & \text{otherwise.} \end{cases}$$
(18)

Then x_0^*, x_1^*, \ldots satisfy (1) with t = 0. From approximations y_i to x_i , as observed for the attack, we have to determine approximations to the x_i^* According to the case distinction in (18), we set

$$y_i^* = \begin{cases} y_{i+1} - y_i & \text{if } x_{i+1} - x_i \ge 0, \\ y_{i+1} - y_i + m & \text{otherwise.} \end{cases}$$
(19)

In both cases we have $|x_i^* - y_i^*| \le 2\alpha$.

In our attack, we are only given the y_i and do not know the sign of $x_{i+1} - x_i$. But we can (almost) deduce it. Namely, if y_i and y_{i+1} differ by at least 2α , say $y_i \geq y_{i+1} + 2\alpha$, then $x_i \geq y_i - \alpha \geq y_{i+1} + \alpha \geq x_{i+1}$ and we have the sign. If $|y_i - y_{i+1}| < 2\alpha$, we do not know this sign and pursue both possibilities. Hopefully the y_i are sufficiently random so that this undesirable branching occurs only rarely.

Finally take

$$y'_{i} = \begin{cases} y_{i+1} - y_{i} & \text{if } y_{i+1} \ge y_{i} + 2\alpha, \\ y_{i+1} - y_{i} + m & \text{if } y_{i+1} \le y_{i} - 2\alpha, \\ \text{both } y_{i+1} - y_{i} \text{ and } y_{i+1} - y_{i} + m & \text{if } |y_{i+1} - y_{i}| < 2\alpha, \end{cases}$$

and call the algorithm for Theorem 17 with s, m, t = 0, and 2α for α and the 2α -approximations y'_1, \ldots, y'_n .