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A further cryptanalytic use of basis reduction is to break certain
pseudo-random number generators.

The most popular pseudorandom generators are the linear
congruential pseudorandom generators. We have a modulus

m € N, two integers s,t, a seed xg € N, and define

T; = STi—1 -+t InZ,, (1)

fori>1.
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In the generator (1), we have

xr; = Sxi_1+tinZpy,

Tiy1 = Sxz;+tin Zpy,.
In order to eliminate s and ¢, we subtract and find
Ti — Lj41 = 8(.1‘1‘_1 — .Z‘Z) in Zm.

Similarly we get

Ti41 — Ti+2 = S(.TZ' — $i+1) in Zm

Multiplying by appropriate quantities, we obtain

(l’i - l’i+1)2 = 8(%‘ - $z‘+1)($z‘—1 - ﬂ%)

(g1 — Tig2)(Ti—1 — ) in Zpy,.
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Thus from four consecutive values x;_1, x;, Tijt+1, Ti+2 We get a
multiple

! 2
m = (J?z - J?z‘+1) - (33i+1 - 513i+2)(33i—1 - 5132)
of m.
If the required geds are 1, then we can also compute guesses s’
and t/ for s and t, respectively. We can then compute the next
values z; 13, %14, ... with these guesses and also observe the
generator. Whenever a discrepancy occurs, we refine our guesses.
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Instead of outputting all of x;, we only use part of it, say the top
half of its bits. More generally, we take an integer approximation
parameter o > 1 and for ¢ > 1 output an a-approximation y; to z;
with

|z, — yi| < o (2)

There are many such y;, and we need a deterministic way of
determining one of them. A natural choice is

yi = L&J e (3)

a
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We use the symmetric system of representatives modulo m

Ry ={=[m/2],..., [(m—1)/2]},

where u srem m € R, is the representative of u € Z and

u = (usremm) in Z,,. For an approximation parameter « and
u € R, the a-vicinity of u is the set of integers whose distance
from wu is at most «a:

Valu)={veZ:|u—-v <a}.

(4)
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If w and v € Z are positive k-bit integers and their first &k — ¢ bits
agree, then |u — v| < 21 and v € Vyer1 (u). But due to carries,
the reverse may be false. As an example, we take k£ = 6,
0<¢<4,47 = (101111)9 € V;(48) C V,(48), and

48 = (110000)o € V1(47) C V5e(47). But the two (or more)
leading bits of the 6-bit integers 47 and 48 do not agree.
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We first show that key recovery from y1,..., ¥y, is usually possible
when ¢t = 0 in (1), which we now assume. Later, we reduce the
general case to this one. The unknown integers 1, ..., x, satisfy

Tiy1 = ST; N Ly,

(5)

;=5 "tz in Ly, for 1 <i<n.

We consider the lattice L = L, ,, spanned by the rows

ai,...,ay € Z" of the following n x n matrix:
m 0o 0 - 0
-s 1 0 - 0

A= -s2 0 1 - 0 (6)
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As above, we write
zi = x; — y; with |2z;] < « (7)

for each i. The z; are unknown, and our task is to find them. (5)
implies that

i=ai—yi =5ty +a) -y
="z 4+ (8" — yi) in Zy,

This is a set of linear congruences, but in contrast to the
homogeneous congruences (5), they are inhomogeneous with
(known) constants

ci=s"ly —y. (8)
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The lattice basis reduction works on n linearly independent vectors
in Z™, and the first element by of the reduced basis that it
produces satisfies ||b1|| < 2(*~1/2\;(L). We now need a
generalization which gives a bound on each ||b;|| in terms of the
successive minima A;(L).

THEOREM 9. Let L C R"™ be the lattice generated by its reduced
basis by, ...,b; € RE™. Then
165 < 26=D/2 . \(L) < 2U=D72 ) (L) for all i < ¢.
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LEMMA 10. There is at most one z € Z" with Az = c in Z}, and

(11)

m
< .
HZ” = )\n(L) k (2(n+1)/2 4 1)

Given A, ¢, and m, one can determine in polynomial time whether
such a z exists, and if so, compute it.
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Lemma 10 with ¢ as in (8) and (7) imply that if

m
a <

= (L) - (2D/2 1) (12)

then the approximated generator with ¢ = 0 can be broken. In
(12), we have to analyze A, (L). More specifically, we show an
upper bound on A, (L) for almost all s € Z,,.
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To this end, we need a new tool, namely the dual lattice L* of a
lattice L C R"™, which is defined as

L*={veR": xxveZforall z € L}.

LEMMA 13. If A= (a1,...,a,) € R™™ s nonsingular and L the
lattice generated by the rows of A, then B = (AT)™1 ¢ R™" js a
basis of the dual lattice L*.

We use the following fact without proof.

THEOREM 14. If A] is the length of a shortest nonzero vector in
L*, then X} - \,(L) < n?.
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Recall:

m 0 0

—s 1 0 0

A= -s2 0 1 0
s 1 90 --- 1

We next derive such a lower bound for most s € Z,,. For
notational simplicity, we study the lattice M = mL* generated by
the rows of

1 s s ... g1
0m O 0
0 0 m 0

e}
e}
3
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Consider, for a positive bound C' < m, the set

g {362 |st srem m| < C for 0 < i < n and }
c= :

some t € Z with ged(t,m) =1

of exceptional multipliers s. We will later assume m to be prime,
so that the gcd condition corresponds to ¢ srem m # 0. We have
M(M) > C forall s € Zp, \ Ec.

LEMMA 15. Letn > 2 and s € E¢. Then there exist
di,...,d, €Z, not all divisible by m, with

Z dis= 1 =0in Lo
1<i<n (16)
di| < (nC)Y =Y 42 for all i < n.
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THEOREM 17. Let m be a k-bit prime, n > 19, € > 0,
25n < ml—e

< (1=~ )k~ 1)~ dn,

and o = 2°. Given s and m and a-approximations yi, ..., y, to
the output of the generator (1) with t = 0, the generator can be
broken in polynomial time for all but at most m'~¢ values s € Z,y,.
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This result is almost optimal in the following sense. We think of &
as being large and of € as small. Then the upper bound on

¢ ~ logy «v is roughly (1 — 1/n)k, so that the approximations y;
only have about k/n bits of information about x;.
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We have broken the generator when ¢ = 0, and now reduce the
general case of (1) with arbitrary ¢ to this one. Let 2} = z;11 — ;
for i > 0. Then

x;_H = Ti4+2—Ti4+1 = (8$i+1+t)—(8$i+t) = S(xi—i-l_xi) = SQ?; in Zm,

so that the sequence 2, 2, ... satisfies (1) with ¢ = 0. Their
approximations can be recovered from the original ones, as
described below, with a loss of two bits.
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We have to cope with the following issue. In the standard
formulation (1), we take {0,1,...,m — 1} as representatives of
Z.,, and these integers are approximated in the generator. Thus
instead of z/, we have to use

xj - (18)

7

, .
)T =T - if 2,41 —x; >0,
z, +m =wxit1 —x; + m  otherwise.

Then ), x7, . .. satisfy (1) with ¢ = 0. From approximations y; to
x;, as observed for the attack, we have to determine
approximations to the x7
According to the case distinction in (18), we set
Y= {yi-i-l —Yi if 241 g >0, (19)
Yi+1 — Yi +m  otherwise.

In both cases we have |z} — y| < 2a.
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In our attack, we are only given the y; and do not know the sign of
Ziy1 — ;. But we can (almost) deduce it. Namely, if y; and y;41
differ by at least 2a, say y; > y;+1 + 2a, then

T; > Y — > yYir1 + a > x;0q and we have the sign. If

lyi — yitr1| < 2c, we do not know this sign and pursue both
possibilities. Hopefully the ¥; are sufficiently random so that this
undesirable branching occurs only rarely.
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Finally take

Yirl — Yi if yit1 > i + 20,
Yi =S Yir1 —yi +m if yir1 <y — 2a,
both y;+1 —yi and yir1 —yi +m i |yis1 — yi| < 2¢,

and call the algorithm for Theorem 17 with s, m, t = 0, and 2«
for o and the 2a-approximations v}, ..., y.,.

0/22



