The art of cryptography, summer 2013 Lattices and cryptography

Prof. Dr. Joachim von zur Gathen

A further cryptanalytic use of basis reduction is to break certain pseudo-random number generators.
The most popular pseudorandom generators are the linear congruential pseudorandom generators. We have a modulus $m \in \mathbb{N}$, two integers s, t, a seed $x_{0} \in \mathbb{N}$, and define

$$
\begin{equation*}
x_{i}=s x_{i-1}+t \text { in } \mathbb{Z}_{m} \tag{1}
\end{equation*}
$$

for $i \geq 1$.

In the generator (1), we have

$$
\begin{aligned}
x_{i} & =s x_{i-1}+t \text { in } \mathbb{Z}_{m} \\
x_{i+1} & =s x_{i}+t \text { in } \mathbb{Z}_{m}
\end{aligned}
$$

In order to eliminate s and t, we subtract and find

$$
x_{i}-x_{i+1}=s\left(x_{i-1}-x_{i}\right) \text { in } \mathbb{Z}_{m} .
$$

Similarly we get

$$
x_{i+1}-x_{i+2}=s\left(x_{i}-x_{i+1}\right) \text { in } \mathbb{Z}_{m} .
$$

Multiplying by appropriate quantities, we obtain

$$
\begin{aligned}
\left(x_{i}-x_{i+1}\right)^{2} & =s\left(x_{i}-x_{i+1}\right)\left(x_{i-1}-x_{i}\right) \\
& =\left(x_{i+1}-x_{i+2}\right)\left(x_{i-1}-x_{i}\right) \text { in } \mathbb{Z}_{m}
\end{aligned}
$$

Thus from four consecutive values $x_{i-1}, x_{i}, x_{i+1}, x_{i+2}$ we get a multiple

$$
m^{\prime}=\left(x_{i}-x_{i+1}\right)^{2}-\left(x_{i+1}-x_{i+2}\right)\left(x_{i-1}-x_{i}\right)
$$

of m.
If the required gcds are 1 , then we can also compute guesses s^{\prime} and t^{\prime} for s and t, respectively. We can then compute the next values x_{i+3}, x_{i+4}, \ldots with these guesses and also observe the generator. Whenever a discrepancy occurs, we refine our guesses.

Instead of outputting all of x_{i}, we only use part of it, say the top half of its bits. More generally, we take an integer approximation parameter $\alpha \geq 1$ and for $i \geq 1$ output an α-approximation y_{i} to x_{i} with

$$
\begin{equation*}
\left|x_{i}-y_{i}\right| \leq \alpha \tag{2}
\end{equation*}
$$

There are many such y_{i}, and we need a deterministic way of determining one of them. A natural choice is

$$
\begin{equation*}
y_{i}=\left\lfloor\frac{x_{i}}{\alpha}\right\rfloor \cdot \alpha ; \tag{3}
\end{equation*}
$$

We use the symmetric system of representatives modulo m

$$
R_{m}=\{-\lfloor m / 2\rfloor, \ldots,\lfloor(m-1) / 2\rfloor\},
$$

where u srem $m \in R_{m}$ is the representative of $u \in \mathbb{Z}$ and $u=(u$ srem $m)$ in \mathbb{Z}_{m}. For an approximation parameter α and $u \in \mathbb{R}$, the α-vicinity of u is the set of integers whose distance from u is at most α :

$$
\begin{equation*}
V_{\alpha}(u)=\{v \in \mathbb{Z}:|u-v| \leq \alpha\} . \tag{4}
\end{equation*}
$$

If u and $v \in \mathbb{Z}$ are positive k-bit integers and their first $k-\ell$ bits agree, then $|u-v|<2^{\ell+1}$ and $v \in V_{2^{\ell+1}}(u)$. But due to carries, the reverse may be false. As an example, we take $k=6$, $0 \leq \ell \leq 4,47=(101111)_{2} \in V_{1}(48) \subseteq V_{2 \ell}(48)$, and $48=(110000)_{2} \in V_{1}(47) \subseteq V_{2^{e}}(47)$. But the two (or more) leading bits of the 6 -bit integers 47 and 48 do not agree.

We first show that key recovery from y_{1}, \ldots, y_{n} is usually possible when $t=0$ in (1), which we now assume. Later, we reduce the general case to this one. The unknown integers x_{1}, \ldots, x_{n} satisfy

$$
\begin{align*}
x_{i+1} & =s x_{i} \text { in } \mathbb{Z}_{m}, \tag{5}\\
x_{i} & =s^{i-1} x_{1} \text { in } \mathbb{Z}_{m}, \text { for } 1 \leq i \leq n .
\end{align*}
$$

We consider the lattice $L=L_{s, m}$ spanned by the rows $a_{1}, \ldots, a_{n} \in \mathbb{Z}^{n}$ of the following $n \times n$ matrix:

$$
A=\left(\begin{array}{ccccc}
m & 0 & 0 & \cdots & 0 \tag{6}\\
-s & 1 & 0 & \cdots & 0 \\
-s^{2} & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-s^{n-1} & 0 & 0 & \cdots & 1
\end{array}\right)
$$

As above, we write

$$
\begin{equation*}
z_{i}=x_{i}-y_{i} \text { with }\left|z_{i}\right| \leq \alpha \tag{7}
\end{equation*}
$$

for each i. The z_{i} are unknown, and our task is to find them. (5) implies that

$$
\begin{aligned}
z_{i} & =x_{i}-y_{i}=s^{i-1}\left(y_{1}+z_{1}\right)-y_{i} \\
& =s^{i-1} z_{1}+\left(s^{i-1} y_{1}-y_{i}\right) \text { in } \mathbb{Z}_{m}
\end{aligned}
$$

This is a set of linear congruences, but in contrast to the homogeneous congruences (5), they are inhomogeneous with (known) constants

$$
\begin{equation*}
c_{i}=s^{i-1} y_{1}-y_{i} . \tag{8}
\end{equation*}
$$

The lattice basis reduction works on n linearly independent vectors in \mathbb{Z}^{n}, and the first element b_{1} of the reduced basis that it produces satisfies $\left\|b_{1}\right\| \leq 2^{(n-1) / 2} \lambda_{1}(L)$. We now need a generalization which gives a bound on each $\left\|b_{i}\right\|$ in terms of the successive minima $\lambda_{i}(L)$.

Theorem 9. Let $L \subseteq \mathbb{R}^{n}$ be the lattice generated by its reduced basis $b_{1}, \ldots, b_{\ell} \in \mathbb{R}^{\ell \times n}$. Then $\left\|b_{i}\right\| \leq 2^{(\ell-1) / 2} \cdot \lambda_{i}(L) \leq 2^{(\ell-1) / 2} \lambda_{\ell}(L)$ for all $i \leq \ell$.

Lemma 10. There is at most one $z \in \mathbb{Z}^{n}$ with $A z=c$ in \mathbb{Z}_{m}^{n} and

$$
\begin{equation*}
\|z\| \leq \frac{m}{\lambda_{n}(L) \cdot\left(2^{(n+1) / 2}+1\right)} \tag{11}
\end{equation*}
$$

Given A, c, and m, one can determine in polynomial time whether such a z exists, and if so, compute it.

Lemma 10 with c as in (8) and (7) imply that if

$$
\begin{equation*}
\alpha \leq \frac{m}{\lambda_{n}(L) \cdot\left(2^{(n+1) / 2}+1\right)} \tag{12}
\end{equation*}
$$

then the approximated generator with $t=0$ can be broken. In (12), we have to analyze $\lambda_{n}(L)$. More specifically, we show an upper bound on $\lambda_{n}(L)$ for almost all $s \in \mathbb{Z}_{m}$.

To this end, we need a new tool, namely the dual lattice L^{*} of a lattice $L \subseteq \mathbb{R}^{n}$, which is defined as

$$
L^{*}=\left\{v \in \mathbb{R}^{n}: x \star v \in \mathbb{Z} \text { for all } x \in L\right\} .
$$

Lemma 13. If $A=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n \times n}$ is nonsingular and L the lattice generated by the rows of A, then $B=\left(A^{T}\right)^{-1} \in \mathbb{R}^{n \times n}$ is a basis of the dual lattice L^{*}.

We use the following fact without proof.
Theorem 14. If λ_{1}^{*} is the length of a shortest nonzero vector in L^{*}, then $\lambda_{1}^{*} \cdot \lambda_{n}(L) \leq n^{2}$.

Recall:

$$
A=\left(\begin{array}{ccccc}
m & 0 & 0 & \cdots & 0 \\
-s & 1 & 0 & \cdots & 0 \\
-s^{2} & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-s^{n-1} & 0 & 0 & \cdots & 1
\end{array}\right)
$$

We next derive such a lower bound for most $s \in \mathbb{Z}_{m}$. For notational simplicity, we study the lattice $M=m L^{*}$ generated by the rows of

$$
\left(\begin{array}{ccccc}
1 & s & s^{2} & \cdots & s^{n-1} \\
0 & m & 0 & \cdots & 0 \\
0 & 0 & m & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & \cdots & m
\end{array}\right)
$$

Consider, for a positive bound $C<m$, the set

$$
E_{C}=\left\{s \in \mathbb{Z}: \begin{array}{c}
\mid s^{i} t \text { srem } m \mid<C \text { for } 0 \leq i<n \text { and } \\
\text { some } t \in \mathbb{Z} \text { with } \operatorname{gcd}(t, m)=1
\end{array}\right\}
$$

of exceptional multipliers s. We will later assume m to be prime, so that the gcd condition corresponds to t srem $m \neq 0$. We have $\lambda_{1}(M) \geq C$ for all $s \in \mathbb{Z}_{m} \backslash E_{C}$.

Lemma 15. Let $n \geq 2$ and $s \in E_{C}$. Then there exist $d_{1}, \ldots, d_{n} \in \mathbb{Z}$, not all divisible by m, with

$$
\begin{align*}
& \sum_{1 \leq i \leq n} d_{i} s^{i-1}=0 \text { in } \mathbb{Z}_{m} \tag{16}\\
& \left|d_{i}\right|<(n C)^{1 /(n-1)}+2 \text { for all } i \leq n .
\end{align*}
$$

Theorem 17. Let m be a k-bit prime, $n \geq 19, \epsilon>0$, $2^{5 n} \leq m^{1-\epsilon}$,

$$
\ell \leq(1-\epsilon)\left(1-\frac{1}{n}\right)(k-1)-4 n
$$

and $\alpha=2^{\ell}$. Given s and m and α-approximations y_{1}, \ldots, y_{n} to the output of the generator (1) with $t=0$, the generator can be broken in polynomial time for all but at most $m^{1-\epsilon}$ values $s \in \mathbb{Z}_{m}$.

This result is almost optimal in the following sense. We think of k as being large and of ϵ as small. Then the upper bound on $\ell \approx \log _{2} \alpha$ is roughly $(1-1 / n) k$, so that the approximations y_{i} only have about k / n bits of information about x_{i}.

We have broken the generator when $t=0$, and now reduce the general case of (1) with arbitrary t to this one. Let $x_{i}^{\prime}=x_{i+1}-x_{i}$ for $i \geq 0$. Then
$x_{i+1}^{\prime}=x_{i+2}-x_{i+1}=\left(s x_{i+1}+t\right)-\left(s x_{i}+t\right)=s\left(x_{i+1}-x_{i}\right)=s x_{i}^{\prime}$ in \mathbb{Z}_{m},
so that the sequence $x_{1}^{\prime}, x_{2}^{\prime}, \ldots$ satisfies (1) with $t=0$. Their approximations can be recovered from the original ones, as described below, with a loss of two bits.

We have to cope with the following issue. In the standard formulation (1), we take $\{0,1, \ldots, m-1\}$ as representatives of \mathbb{Z}_{m}, and these integers are approximated in the generator. Thus instead of x_{i}^{\prime}, we have to use

$$
x_{i}^{*}= \begin{cases}x_{i}^{\prime}=x_{i+1}-x_{i} & \text { if } x_{i+1}-x_{i} \geq 0 \tag{18}\\ x_{i}^{\prime}+m=x_{i+1}-x_{i}+m & \text { otherwise }\end{cases}
$$

Then $x_{0}^{*}, x_{1}^{*}, \ldots$ satisfy (1) with $t=0$. From approximations y_{i} to x_{i}, as observed for the attack, we have to determine approximations to the x_{i}^{*}
According to the case distinction in (18), we set

$$
y_{i}^{*}= \begin{cases}y_{i+1}-y_{i} & \text { if } x_{i+1}-x_{i} \geq 0 \tag{19}\\ y_{i+1}-y_{i}+m & \text { otherwise }\end{cases}
$$

In both cases we have $\left|x_{i}^{*}-y_{i}^{*}\right| \leq 2 \alpha$.

In our attack, we are only given the y_{i} and do not know the sign of $x_{i+1}-x_{i}$. But we can (almost) deduce it. Namely, if y_{i} and y_{i+1} differ by at least 2α, say $y_{i} \geq y_{i+1}+2 \alpha$, then $x_{i} \geq y_{i}-\alpha \geq y_{i+1}+\alpha \geq x_{i+1}$ and we have the sign. If
$\left|y_{i}-y_{i+1}\right|<2 \alpha$, we do not know this sign and pursue both possibilities. Hopefully the y_{i} are sufficiently random so that this undesirable branching occurs only rarely.

Finally take

$$
y_{i}^{\prime}= \begin{cases}y_{i+1}-y_{i} & \text { if } y_{i+1} \geq y_{i}+2 \alpha \\ y_{i+1}-y_{i}+m & \text { if } y_{i+1} \leq y_{i}-2 \alpha \\ \text { both } y_{i+1}-y_{i} \text { and } y_{i+1}-y_{i}+m & \text { if }\left|y_{i+1}-y_{i}\right|<2 \alpha\end{cases}
$$

and call the algorithm for Theorem 17 with $s, m, t=0$, and 2α for α and the 2α-approximations $y_{1}^{\prime}, \ldots, y_{n}^{\prime}$.

