The art of cryptography: Lattices and cryptography, summer 2013

Prof. Dr. Joachim von zur Gathen, Dr. Daniel Loebenberger

3. Exercise sheet Hand in solutions until Sunday, 05 May 2013, 23:59h.

Exercise 3.1 (Breaking truncated linear congruential generators). (19+10 points)
We consider the truncated homogenous linear congruential generators with $x_{i}=$ $s x_{i-1} \in \mathbb{Z}_{m}$. We are given that $m=1009, \ell=\lceil\log (2, m) / 2\rceil=5$ and $s=25$. The sequence y is defined as $y_{i}:=\left\lfloor x_{i} / 2^{\ell}\right\rfloor$ which you intercepted as

$$
0,10,21,25,30,8,13,13,24,14,7,6,15,28,10,3,17,25,0,15,12, \ldots
$$

Our task is to break this generator completely. To do so, we will recover the sequence z_{i} with $x_{i}=y_{i} 2^{\ell}+z_{i}$.
(i) Write down the matrix (over \mathbb{Z} !)

$$
A=\left[\begin{array}{cccccc}
m & 0 & 0 & 0 & 0 & 0 \\
-s & 1 & 0 & 0 & 0 & 0 \\
-s^{2} & 0 & 1 & 0 & 0 & 0 \\
-s^{3} & 0 & 0 & 1 & 0 & 0 \\
-s^{4} & 0 & 0 & 0 & 1 & 0 \\
-s^{5} & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

(ii) Compute the sequence $c_{i}:=\left(s^{i-1} y_{1}-y_{i}\right) 2^{\ell}$ over \mathbb{Z} for $i=1, \ldots, 6$.
(iii) Using lattice basis reduction compute a reduced basis B and a unimodular transformation U such that $B=U A$.
(iv) Compute $U c$ and take the balanced system of representatives modulo m of your result.
(v) Now solve $B z=U c$ using Gaussian elimination, obtaining the z_{i}.
(vi) Finish by writing down the sequence x_{i}.
(vii) Compute the next 5 values of the above sequence of y 's.
(viii) Argue that you have broken the generator.
(ix) Explain in detail why we had to use basis reduction at all.
(x) Play a bit around with your algorithms. Try different values of m, s and ℓ and report on the successes and failures.

Exercise 3.2 (Dual lattices).
(10 points)
Let L be a lattice generated by the basis $B \in \mathbb{R}^{\ell \times n}$, and let L^{*} be its dual.
(i) Prove that $D=\left(B B^{T}\right)^{-1} B$ is a basis of L^{*}. Hint: We have $\operatorname{span}_{\mathbb{R}}(B)=$ $\operatorname{span}_{\mathbb{R}}(D)$ and $D B^{T}=I$, where I is the identity matrix.
(ii) Show that $\left(L^{*}\right)^{*}=L$.
(iii) Prove that $\left|L^{*}\right|=|L|^{-1}$.
(iv) Show that $\lambda(L) \lambda\left(L^{*}\right) \leq n$. Hint: Use Minkowski's bound $\lambda(L) \leq \sqrt{n} \operatorname{det}(L)^{1 / n}$.
(v) Let L be the lattice generated by the basis

$$
B=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)
$$

Compute a basis of L^{*}.

