The art of cryptography, summer 2013 Lattices and cryptography

Prof. Dr. Joachim von zur Gathen

Given a lattice $L \subseteq \mathbb{R}^{n}$ and $u \in \mathbb{R}^{n}$, the distance of u to L is

$$
d(u, L)=\min \{\|u-x\|: x \in L\} .
$$

An element $x \in L$ is a closest vector to u if $\|u-x\|=d(u, L)$. The closest vector problem CVP is to compute such an x, given u and a basis of L. In the approximate close vector problem α-CVP, we are also given some $\alpha \geq 1$ and have to compute $x \in L$ with $\|u-x\| \leq \alpha \cdot d(u, L)$.

The following heuristic method reduces $2 \alpha-$ CVP to $\alpha-$ SVP. The claim is unproven, but the algorithm seems to work in practice, at least in high dimensions.
We write $u=\left(u_{1}, \ldots, u_{n}\right)$ and place the $n \times n$ matrix A representing a basis of L into the top right part of the following matrix:

$$
A^{\prime}=\left(\begin{array}{cccc}
0 & & & \tag{1}\\
\vdots & & A & \\
0 & & & \\
1 & u_{1} & \cdots & u_{n}
\end{array}\right)
$$

Using an algorithm for α-SVP, we compute a nonzero $y=\left(y_{0}, y_{1}, \ldots, y_{n}\right)$ in the lattice $M \subseteq \mathbb{R}^{n+1}$ generated by the rows of A^{\prime}, with $\|y\| \leq \alpha \cdot \lambda_{1}(M)$. If y_{0} divides y_{1}, \ldots, y_{n}, we return $u-y_{0}^{-1} \cdot\left(y_{1}, \ldots, y_{n}\right)$, and otherwise "failure".

Algorithm 2. Nearest hyperplane.
Input: A reduced basis $B=\left(b_{1}, \ldots, b_{\ell}\right)$ of an ℓ-dimensional lattice L in \mathbb{R}^{n}, and $u \in \operatorname{span}_{\mathbb{R}}(L) \subseteq \mathbb{R}^{n}$.
Output: $x \in L$ with $\|u-x\| \leq 2^{\ell / 2} d(u, L)$.

1. Compute the GSO $\left(b_{1}^{*}, \ldots, b_{\ell}^{*}\right)$ of $\left(b_{1}, \ldots, b_{\ell}\right)$.
2. Compute $c=u \star b_{\ell}^{*} /\left(b_{\ell}^{*} \star b_{\ell}^{*}\right)$.
3. $c^{\prime} \longleftarrow\lceil c\rfloor$,
$v \longleftarrow u-\left(c-c^{\prime}\right) b_{\ell}^{*}$,
$y \longleftarrow c^{\prime} b_{\ell}$.
4. If $\ell=1$, then return $x=y$. Else let M be the lattice generated by $b_{1}, \ldots, b_{\ell-1}$. Call the algorithm recursively to return $z \in M$ close to $v-y$.
5. Return $x=y+z$.

TheOrem 3. The output x of the nearest hyperplane algorithm Algorithm 2 satisfies $\|u-x\|<2^{\ell / 2} d(u, L)$. It runs in polynomial time.

Figure: Trace of Algorithm 2 on the reduced basis $\left(b_{1}, b_{2}\right)=((1,2),(9,-4))$ and the target vector $u=(6,0.9)$.

Example 4. We take the reduced basis $\left(b_{1}, b_{2}\right)=((1,2),(9,-4))$ of the lattice L with $\ell=n=2$, and $u=(6,0.9)$. In the figure, one sees four candidates in L that look close to u. Which one is the closest? We have

$$
\begin{aligned}
b_{1}^{*} & =b_{1}, b_{2}^{*}=(44 / 5,-22 / 5) \\
u & =\frac{39}{25} b_{1}^{*}+\frac{111}{220} b_{2}^{*} \\
c^{\prime} & =\left\lceil\frac{111}{220}\right\rfloor=1 \\
v & =u-\left(\frac{111}{220}-1\right) \cdot b_{2}^{*}=(10.36,-1.28) \\
y & =(9,-4) \\
v-y & =(10.36,-1.28)-(9,-4)=(1.36,2.72)
\end{aligned}
$$

