The art of cryptography, summer 2013 Lattices and cryptography

Prof. Dr. Joachim von zur Gathen

Given a lattice $L \subseteq \mathbb{R}^n$ and $u \in \mathbb{R}^n$, the distance of u to L is

$$d(u, L) = \min\{\|u - x\| \colon x \in L\}.$$

An element $x \in L$ is a *closest vector* to u if ||u - x|| = d(u, L). The *closest vector problem* CVP is to compute such an x, given u and a basis of L. In the approximate *close vector problem* α -CVP, we are also given some $\alpha \ge 1$ and have to compute $x \in L$ with $||u - x|| \le \alpha \cdot d(u, L)$. The following heuristic method reduces 2α -CVP to α -SVP. The claim is unproven, but the algorithm seems to work in practice, at least in high dimensions.

We write $u = (u_1, \ldots, u_n)$ and place the $n \times n$ matrix A representing a basis of L into the top right part of the following matrix:

$$A' = \begin{pmatrix} 0 & & \\ \vdots & A & \\ 0 & & \\ 1 & u_1 & \cdots & u_n \end{pmatrix}.$$
 (1)

Using an algorithm for α -SVP, we compute a nonzero $y = (y_0, y_1, \ldots, y_n)$ in the lattice $M \subseteq \mathbb{R}^{n+1}$ generated by the rows of A', with $||y|| \le \alpha \cdot \lambda_1(M)$. If y_0 divides y_1, \ldots, y_n , we return $u - y_0^{-1} \cdot (y_1, \ldots, y_n)$, and otherwise "failure".

ALGORITHM 2. Nearest hyperplane.

Input: A reduced basis $B = (b_1, \dots, b_\ell)$ of an ℓ -dimensional lattice L in \mathbb{R}^n , and $u \in \operatorname{span}_{\mathbb{R}}(L) \subseteq \mathbb{R}^n$. Output: $x \in L$ with $||u - x|| \leq 2^{\ell/2} d(u, L)$.

1. Compute the GSO $(b_1^*, \ldots, b_\ell^*)$ of (b_1, \ldots, b_ℓ) .

2. Compute
$$c = u \star b_{\ell}^* / (b_{\ell}^* \star b_{\ell}^*)$$
.

3.
$$c' \longleftarrow [c],$$

 $v \longleftarrow u - (c - c')b_{\ell}^*,$
 $y \longleftarrow c'b_{\ell}.$

- 4. If $\ell = 1$, then return x = y. Else let M be the lattice generated by $b_1, \ldots, b_{\ell-1}$. Call the algorithm recursively to return $z \in M$ close to v y.
- 5. Return x = y + z.

THEOREM 3. The output x of the nearest hyperplane algorithm Algorithm 2 satisfies $||u - x|| < 2^{\ell/2} d(u, L)$. It runs in polynomial time.

Figure: Trace of Algorithm 2 on the reduced basis $(b_1, b_2) = ((1, 2), (9, -4))$ and the target vector u = (6, 0.9).

EXAMPLE 4. We take the reduced basis $(b_1, b_2) = ((1, 2), (9, -4))$ of the lattice L with $\ell = n = 2$, and u = (6, 0.9). In the figure, one sees four candidates in L that look close to u. Which one is the closest? We have

$$\begin{split} b_1^* &= b_1, b_2^* = (44/5, -22/5), \\ u &= \frac{39}{25} b_1^* + \frac{111}{220} b_2^*, \\ c' &= \left\lceil \frac{111}{220} \right\rceil = 1, \\ v &= u - (\frac{111}{220} - 1) \cdot b_2^* = (10.36, -1.28), \\ y &= (9, -4), \\ v &- y &= (10.36, -1.28) - (9, -4) = (1.36, 2.72). \end{split}$$