The art of cryptography: Lattices and cryptography, summer 2013

PROF. DR. JOACHIM VON ZUR GATHEN, DR. DANIEL LOEBENBERGER

4. Exercise sheet Hand in solutions until Sunday, 12 May 2013, 23:59h.

Exercise 4.1 (Gram-Schmidt orthogonalization). (15 points) Consider the Gram-Schmidt orthogonalization from the lecture. Let $b_1, \ldots, b_\ell \in \mathbb{R}^n$ be linearly independent, and b_i^*, \ldots, b_ℓ^* their Gram-Schmidt orthogonalization. For $0 \le k \le \ell$ let $U_k = \sum_{1 \le i \le k} \mathbb{R}b_i \subseteq \mathbb{R}^n$ be the \mathbb{R} -subspace spanned by b_1, \ldots, b_k . (i) Consider the vector space V = span(B), spanned by the basis $B := \begin{bmatrix} 2 & 1 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}.$ Compute an orthogonal basis of V. (ii) Show that $\sum_{1 \le i \le k} \mathbb{R}b_i^* = U_k$. 3 3 (iii) Show that b_1^*, \ldots, b_ℓ^* are pairwise orthogonal, that is, $b_i^* \star b_j^* = 0$ if $i \neq j$. 4 (iv) Show that b_k^* is the projection of b_k onto the orthogonal complement $U_{k-1}^{\perp} = \{ b \in \mathbb{R}^n \colon b \star u = 0 \text{ for all } u \in U_{k-1} \}$ of U_{k-1} , and hence in particular $||b_k^*|| \le ||b_k||$. (v) Show that $\det \begin{pmatrix} b_1 \\ \vdots \\ b_\ell \end{pmatrix} = \det \begin{pmatrix} b_1^* \\ \vdots \\ b_e^* \end{pmatrix}$. 1 (vi) Construct out of the Gram-Schmidt orthogonalization procedure a method 2 which returns an orthonormal basis, i.e. an orthogonal basis B^* , where we have for all b_i^* that $||b_i^*|| = 1$. Exercise 4.2 (Close vectors). (5+12 points) In the lecture we have seen an algorithm for computing an approximation to the closest vector problem. (i) Consider the reduced basis $B := \begin{bmatrix} 3 & 2 & 1 \\ -2 & 1 & 4 \\ -2 & 2 & -2 \end{bmatrix}$ and the vector u = (8, 9, 10). 5 Trace the values of the algorithm by hand and give the approximate solution +2

+2 to the CVP.

(ii) Implement the algorithm in a programming language of your choice. Hand +10 in the source code.

Exercise 4.3 (The gcd lattice revisited).

(9 points)

We are now going to prove that for $\gamma > 2C$, the basis reductions will always compute the correct solution for the gcd lattice *L* from exercise 2.2.

- (i) Show that every vector $v \in L$ is of the form $(v_1, v_2, \gamma(v_1a + v_2b))$.
- (ii) Take any such vector with $v_1a + v_2b \neq 0$. Show that then $||v||^2 \geq \gamma^2$.
- (iii) Now consider a reduced basis \overline{B} . We know from the lecture that we have $\|\overline{b}_1\| \leq \sqrt{2\lambda_1(L)}$, where $\lambda_1(L)$ is the length of a nonzero shortest vector in L. In particular it follows that $\|\overline{b}_1\| \leq \sqrt{2}\|v\|$ for any nonzero vector $v \in L$. Show that from that it follows that $\|\overline{b}_1\| \leq 2C$. Hint: Consider the vector (-b, a, 0).
- (iv) Conclude that for $\gamma > 2C$ the vector \bar{b}_1 is of the form $(x_1, x_2, 0)$.

We now know that we have a reduced basis $\bar{B} = \begin{bmatrix} x_1 & x_2 & 0 \\ s & t & \pm \gamma g \end{bmatrix}$. Further we know from the lecture that there is a unimodular transformation U with $\bar{B} = UB$ with $U = \begin{bmatrix} x_1 & x_2 \\ s & t \end{bmatrix}$ such that $x_1t - x_2s = \pm 1$. The inverse is given as $U^{-1} = \begin{bmatrix} t & x_2 \\ s & x_1 \end{bmatrix}$.

- (v) Argue that we have $U[\gamma a, \gamma b]^T = [0, \gamma g]^T$ and conclude from it that $g = \pm \gcd(a, b)$.
- (vi) Compare your result to the experiments you were doing in exercise 2.2.

1

2

2