The art of cryptography: Lattices and cryptography, summer 2013

Prof. Dr. Joachim von zur Gathen, Dr. Daniel Loebenberger

4. Exercise sheet

 Hand in solutions until Sunday, 12 May 2013, 23:59h.Exercise 4.1 (Gram-Schmidt orthogonalization).
(15 points)
Consider the Gram-Schmidt orthogonalization from the lecture. Let $b_{1}, \ldots, b_{\ell} \in \mathbb{R}^{n}$ be linearly independent, and $b_{i}^{*}, \ldots, b_{\ell}^{*}$ their Gram-Schmidt orthogonalization. For $0 \leq k \leq \ell$ let $U_{k}=\sum_{1 \leq i \leq k} \mathbb{R} b_{i} \subseteq \mathbb{R}^{n}$ be the \mathbb{R}-subspace spanned by b_{1}, \ldots, b_{k}.
(i) Consider the vector space $V=\operatorname{span}(B)$, spanned by the basis

$$
B:=\left[\begin{array}{lll}
2 & 1 & 2 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right]
$$

Compute an orthogonal basis of V.
(ii) Show that $\sum_{1 \leq i \leq k} \mathbb{R} b_{i}^{*}=U_{k}$.
(iii) Show that $b_{1}^{*}, \ldots, b_{\ell}^{*}$ are pairwise orthogonal, that is, $b_{i}^{*} \star b_{j}^{*}=0$ if $i \neq j$.
(iv) Show that b_{k}^{*} is the projection of b_{k} onto the orthogonal complement

$$
U_{k-1}^{\perp}=\left\{b \in \mathbb{R}^{n}: b \star u=0 \text { for all } u \in U_{k-1}\right\}
$$

of U_{k-1}, and hence in particular $\left\|b_{k}^{*}\right\| \leq\left\|b_{k}\right\|$.
(v) Show that det $\left(\begin{array}{c}b_{1} \\ \vdots \\ b_{\ell}\end{array}\right)=\operatorname{det}\left(\begin{array}{c}b_{1}^{*} \\ \vdots \\ b_{\ell}^{*}\end{array}\right)$.
(vi) Construct out of the Gram-Schmidt orthogonalization procedure a method which returns an orthonormal basis, i.e. an orthogonal basis B^{*}, where we have for all b_{i}^{*} that $\left\|b_{i}^{*}\right\|=1$.

Exercise 4.2 (Close vectors).

In the lecture we have seen an algorithm for computing an approximation to the closest vector problem.
(i) Consider the reduced basis $B:=\left[\begin{array}{ccc}3 & 2 & 1 \\ -2 & 1 & 4 \\ -2 & 2 & -2\end{array}\right]$ and the vector $u=(8,9,10)$.

Trace the values of the algorithm by hand and give the approximate solution to the CVP.
(ii) Implement the algorithm in a programming language of your choice. Hand in the source code.

Exercise 4.3 (The gcd lattice revisited).
We are now going to prove that for $\gamma>2 C$, the basis reductions will always compute the correct solution for the gcd lattice L from exercise 2.2.
(i) Show that every vector $v \in L$ is of the form $\left(v_{1}, v_{2}, \gamma\left(v_{1} a+v_{2} b\right)\right)$.
(ii) Take any such vector with $v_{1} a+v_{2} b \neq 0$. Show that then $\|v\|^{2} \geq \gamma^{2}$.
(iii) Now consider a reduced basis \bar{B}. We know from the lecture that we have $\left\|\bar{b}_{1}\right\| \leq \sqrt{2} \lambda_{1}(L)$, where $\lambda_{1}(L)$ is the length of a nonzero shortest vector in L. In particular it follows that $\left\|\bar{b}_{1}\right\| \leq \sqrt{2}\|v\|$ for any nonzero vector $v \in L$. Show that from that it follows that $\left\|\bar{b}_{1}\right\| \leq 2 C$. Hint: Consider the vector $(-b, a, 0)$.
(iv) Conclude that for $\gamma>2 C$ the vector \bar{b}_{1} is of the form $\left(x_{1}, x_{2}, 0\right)$.

We now know that we have a reduced basis $\bar{B}=\left[\begin{array}{ccc}x_{1} & x_{2} & 0 \\ s & t & \pm \gamma g\end{array}\right]$. Further we know from the lecture that there is a unimodular transformation U with $\bar{B}=U B$ with $U=\left[\begin{array}{cc}x_{1} & x_{2} \\ s & t\end{array}\right]$ such that $x_{1} t-x_{2} s= \pm 1$. The inverse is given as $U^{-1}=$ $\left[\begin{array}{ll}t & x_{2} \\ s & x_{1}\end{array}\right]$.
(v) Argue that we have $U[\gamma a, \gamma b]^{T}=[0, \gamma g]^{T}$ and conclude from it that $g=$ $\pm \operatorname{gcd}(a, b)$.
(vi) Compare your result to the experiments you were doing in exercise 2.2 .

