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Given an arbitrary basis (b1, ...,b;) of an ¢-dimensional subspace
of R™, it computes an orthogonal basis (b7, ...,b;) of the same
subspace.
The b} are defined inductively as follows.
i x b
b =b; — Z pijby, where pi;; = W for1<j<i. (1)
1<5<i J

In particular, b7 = by. Then (b],...,b}) is the Gram-Schmidt
orthogonal basis of (by,...,be), and the b} together with the f;;
form the Gram-Schmidt orthogonalization (or GSO for short) of
bi,...,bp.
The cost for computing the GSO is O(n?) arithmetic operations in
Q, since £ < n.
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Figure: The Gram-Schmidt orthogonal basis of (12,2) and (13,4).

We have b = b1 = (12,2),
by« bt 41 11 66
H21 = 5 * 97 __7_)'
b xbi 37 37’ 37
The vector b3 (green) is the projection of by (blue) onto the
orthogonal complement of b; (red).

by = by — pp1b] = (
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We can rewrite (1) as
b; = Z ,uijbj- with Lis = 1. (2)
1<j<i

Since the bj are linearly independent, the p;; € R are uniquely
determined by (2).

We consider the b; and b] to be row vectors in R", and define two
matrices B, B* € R*™ and a matrix M in R

B = : , B* = : » M = (pij)i<ij<e, (3)

where p1;; =1 for e </, and p;; =0 for 1 <i < j <. Then M is
lower triangular with ones on the diagonal, and (1) reads:
by 1 0 b}
B = : = D : =M-B*. (4)
be o e 1)\ b
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EXAMPLE 5. We let £ =n =3, by = (1,1,
bs = (0,1,1), and calculate b7 = b; = (1,1,

byx i 1 11
H21 b?*bi 27 2 2 12109 <27 27 >7

_bg*bf_l _bg*b§_1

M?’l_b“{*b*{ =9 M32_b§*b§_3’

222

by = bz — uz31b} — pgebs = —=, =, = ],

3 3 — H3101 — U320 <333>

110 1 0 0 1 10
B=(101]=|310 5 —3 1 | =MB"

1 1 2 2 2

0 11 3 3 1 -3 3 3

We have [|by|? = [[b2|* = [lbs||* = 2, [Ib]]* = 2, [[b5]]* = 3/2,
|63]]? = 4/3 and det B* = —2.
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THEOREM 6. Let by,...,by € R™ be linearly independent, and
b;,...,b; their Gram-Schmidt orthogonalization. For 0 < k < ¢ let
U, = Zlgz‘gk Rb; € R"™ be the R-subspace spanned by by, ..., b.

> <<k R = Uk
ii. by is the projection of b, onto the orthogonal complement

Ut ,={beR":bxu=0 forallueU,_}

of U1, and hence in particular ||bj || < ||bg]|-
iii. by,...,b; are pairwise orthogonal, that is, by x b; =0 if i # 7.
b1 b}
iv. det } = det :
be b,
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THEOREM 7. Let L C R" be a lattice with basis by, ...,by € R",
Gram-Schmidt orthogonal basis b7, ...,b; € R", and successive
minima A1(L), ..., ¢(L). Then for any 1 < i < { we have

min{[[7 (1, {1074l - - [102]1} < Ai(L).

COROLLARY 8. Let L CR" be a lattice with basis (b1, ...,by)
and Gram-Schmidt orthogonal basis (b, ...,b;) . Then for any
nonzero x € L we have

min{|[b7[], ..., [[bz[]} < [l=].
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DEFINITION 9. Let by,...,by € R™ be linearly independent and
bi,...,b; the corresponding Gram-Schmidt orthogonal basis. Then
bi,... by is reduced if and only if ||b}||* < 2||bf,||* for 1 <i < L.

THEOREM 10. Let by,...,by € R™ be a reduced basis of the

lattice L and \1(L) the length of a shortest nonzero vector x in L.
Then ||b1| < 2(=D/2 . X\ (L).
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ALGORITHM 11. Basis reduction.

Input: Linearly independent row vectors ay,...,ay € Z™.
Output: A reduced basis b1, ..., by of the lattice

—_ =
= O

Lo N oW

L=Y e Za; C T

Fori=1,...,¢ do b; < a;.

Compute the GSO B* € Q*", M € Q¢ asin (1) and (3),
14— 2.

While i < ¢ do 5-10

For j=i—1,2—2,...,1 do step

b; <= b; — [1ij]bj, update the GSO, { replacement step }
If i > 1 and ||b}_,]|* > 2/|b]|* then

exchange b;_1 and b; and update the GSO, { exchange step }
14-1— 1.

Else i <— ¢+ 1.

Return by,...,by.

2/11



b i _
step < bo ) M < b3 ) action
} i 2 row 2 < row 2 — row 1

o
Y& —
- o

7 (112 ;) ( i (1)) ( 1?1 (,2(,) exchange rows 1 and 2
37 B
12 10 12
6 (12 2) (% 1) <% _%) row 2 < row 2 —3- row 1
11 <9 —4> <% 1) <% _%)

Table: Trace of the basis reduction Algorithm 11.
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Figure: The vectors computed by the basis reduction Algorithm 11.
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