The art of cryptography, summer 2013 Lattices and cryptography

Prof. Dr. Joachim von zur Gathen Dr. Daniel Loebenberger

Given an arbitrary basis (b_1,\ldots,b_ℓ) of an ℓ -dimensional subspace of \mathbb{R}^n , it computes an orthogonal basis (b_1^*,\ldots,b_ℓ^*) of the same subspace.

The b_i^* are defined inductively as follows.

$$b_i^* = b_i - \sum_{1 \le j < i} \mu_{ij} b_j^*, \text{ where } \mu_{ij} = \frac{b_i \star b_j^*}{\|b_j^*\|^2} \text{ for } 1 \le j < i.$$
 (1)

In particular, $b_1^* = b_1$. Then $(b_1^*, \ldots, b_\ell^*)$ is the *Gram-Schmidt* orthogonal basis of (b_1, \ldots, b_ℓ) , and the b_i^* together with the μ_{ij} form the *Gram-Schmidt orthogonalization* (or GSO for short) of b_1, \ldots, b_ℓ .

The cost for computing the GSO is $O(n^3)$ arithmetic operations in \mathbb{Q} , since $\ell \leq n$.

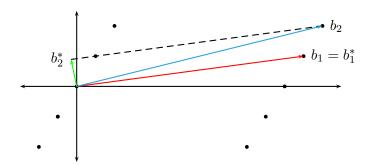


Figure: The Gram-Schmidt orthogonal basis of (12,2) and (13,4).

We have $b_1^* = b_1 = (12, 2)$,

$$\mu_{21} = \frac{b_2 \star b_1^*}{b_1^* \star b_1^*} = \frac{41}{37}, \quad b_2^* = b_2 - \mu_{21}b_1^* = \left(-\frac{11}{37}, \frac{66}{37}\right).$$

The vector b_2^* (green) is the projection of b_2 (blue) onto the orthogonal complement of b_1 (red).

We can rewrite (1) as

$$b_i = \sum_{1 \le j \le i} \mu_{ij} b_j^* \text{ with } \mu_{ii} = 1.$$
 (2)

Since the b_j^* are linearly independent, the $\mu_{ij} \in \mathbb{R}$ are uniquely determined by (2).

We consider the b_i and b_i^* to be row vectors in \mathbb{R}^n , and define two matrices $B, B^* \in \mathbb{R}^{\ell \times n}$ and a matrix M in $\mathbb{R}^{\ell \times \ell}$:

$$B = \begin{pmatrix} b_1 \\ \vdots \\ b_\ell \end{pmatrix}, B^* = \begin{pmatrix} b_1^* \\ \vdots \\ b_\ell^* \end{pmatrix}, M = (\mu_{ij})_{1 \le i, j \le \ell},$$
 (3)

where $\mu_{ii} = 1$ for $i \leq \ell$, and $\mu_{ij} = 0$ for $1 \leq i < j \leq \ell$. Then M is lower triangular with ones on the diagonal, and (1) reads:

$$B = \begin{pmatrix} b_1 \\ \vdots \\ b_{\ell} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \vdots & \ddots \\ \mu_{n1} & \cdots & 1 \end{pmatrix} \begin{pmatrix} b_1^* \\ \vdots \\ b_{\ell}^* \end{pmatrix} = M \cdot B^*.$$
 (4)

EXAMPLE 5. We let $\ell=n=3$, $b_1=(1,1,0)$, $b_2=(1,0,1)$, $b_3=(0,1,1)$, and calculate $b_1^*=b_1=(1,1,0)$,

$$\mu_{21} = \frac{b_2 \star b_1^*}{b_1^* \star b_1^*} = \frac{1}{2}, \quad b_2^* = b_2 - \mu_{21} b_1^* = \left(\frac{1}{2}, -\frac{1}{2}, 1\right),$$

$$\mu_{31} = \frac{b_3 \star b_1^*}{b_1^* \star b_1^*} = \frac{1}{2}, \quad \mu_{32} = \frac{b_3 \star b_2^*}{b_2^* \star b_2^*} = \frac{1}{3},$$

$$b_3^* = b_3 - \mu_{31} b_1^* - \mu_{32} b_2^* = \left(-\frac{2}{3}, \frac{2}{3}, \frac{2}{3}\right),$$

$$B = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{1}{2} & \frac{1}{3} & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 0 \\ \frac{1}{2} & -\frac{1}{2} & 1 \\ -\frac{2}{3} & \frac{2}{3} & \frac{2}{3} \end{pmatrix} = M \cdot B^*.$$

We have $||b_1||^2 = ||b_2||^2 = ||b_3||^2 = 2$, $||b_1^*||^2 = 2$, $||b_2^*||^2 = 3/2$, $||b_3^*||^2 = 4/3$ and $\det B^* = -2$.

THEOREM 6. Let $b_1, \ldots, b_\ell \in \mathbb{R}^n$ be linearly independent, and b_i^*, \ldots, b_ℓ^* their Gram-Schmidt orthogonalization. For $0 \le k \le \ell$ let $U_k = \sum_{1 \le i \le k} \mathbb{R} b_i \subseteq \mathbb{R}^n$ be the \mathbb{R} -subspace spanned by b_1, \ldots, b_k .

- i. $\sum_{1 \leq i \leq k} \mathbb{R} b_i^* = U_k$.
- ii. b_k^* is the projection of b_k onto the orthogonal complement

$$U_{k-1}^{\perp} = \{b \in \mathbb{R}^n \colon b \star u = 0 \text{ for all } u \in U_{k-1}\}$$

of U_{k-1} , and hence in particular $||b_k^*|| \leq ||b_k||$.

iii. b_1^*, \ldots, b_ℓ^* are pairwise orthogonal, that is, $b_i^* \star b_j^* = 0$ if $i \neq j$.

iv.
$$\det \begin{pmatrix} b_1 \\ \vdots \\ b_\ell \end{pmatrix} = \det \begin{pmatrix} b_1^* \\ \vdots \\ b_\ell^* \end{pmatrix}$$
.

THEOREM 7. Let $L \subseteq \mathbb{R}^n$ be a lattice with basis $b_1, \ldots, b_\ell \in \mathbb{R}^n$, Gram-Schmidt orthogonal basis $b_1^*, \ldots, b_\ell^* \in \mathbb{R}^n$, and successive minima $\lambda_1(L), \ldots, \lambda_\ell(L)$. Then for any $1 \le i \le \ell$ we have

$$\min\{||b_i^*||, ||b_{i+1}^*||, \dots, ||b_\ell^*||\} \le \lambda_i(L).$$

COROLLARY 8. Let $L \subseteq \mathbb{R}^n$ be a lattice with basis (b_1, \ldots, b_ℓ) and Gram-Schmidt orthogonal basis $(b_1^*, \ldots, b_\ell^*)$. Then for any nonzero $x \in L$ we have

$$\min\{\|b_1^*\|,\ldots,\|b_\ell^*\|\} \le \|x\|.$$

DEFINITION 9. Let $b_1, \ldots, b_\ell \in \mathbb{R}^n$ be linearly independent and b_1^*, \ldots, b_ℓ^* the corresponding Gram-Schmidt orthogonal basis. Then b_1, \ldots, b_ℓ is reduced if and only if $\|b_i^*\|^2 \leq 2\|b_{i+1}^*\|^2$ for $1 \leq i < \ell$.

THEOREM 10. Let $b_1, \ldots, b_\ell \in \mathbb{R}^n$ be a reduced basis of the lattice L and $\lambda_1(L)$ the length of a shortest nonzero vector x in L. Then $\|b_1\| \leq 2^{(\ell-1)/2} \cdot \lambda_1(L)$.

ALGORITHM 11. Basis reduction.

Input: Linearly independent row vectors $a_1, \ldots, a_\ell \in \mathbb{Z}^n$.

Output: A reduced basis b_1, \ldots, b_ℓ of the lattice

$$L = \sum_{1 \le i \le \ell} \mathbb{Z} a_i \subseteq \mathbb{Z}^n.$$

- 1. For $i = 1, \ldots, \ell$ do $b_i \leftarrow a_i$.
- 2. Compute the GSO $B^* \in \mathbb{Q}^{\ell \times n}$, $M \in \mathbb{Q}^{\ell \times \ell}$, as in (1) and (3),
- 3. $i \leftarrow 2$.
- 4. While $i < \ell$ do 5–10
- 5. For $j = i 1, i 2, \dots, 1$ do step
- 6. $b_i \leftarrow b_i \lceil \mu_{ij} \rfloor b_j$, update the GSO, { replacement step }
- 7. If i > 1 and $||b_{i-1}^*||^2 > 2||b_i^*||^2$ then
- 8. exchange b_{i-1} and b_i and update the GSO, $\{$ exchange step $\}$
- 9. $i \leftarrow i 1$.
- 10. Else $i \leftarrow i + 1$.
- 11. Return b_1, \ldots, b_ℓ .

step	$\left(\begin{array}{c} b_1 \\ b_2 \end{array} \right)$	M	$\left(egin{array}{c} b_1^* \ b_2^* \end{array} ight)$	action
6	$\left(\begin{array}{cc} 12 & 2 \\ 13 & 4 \end{array}\right)$	$\left(\begin{array}{cc} 1 & 0\\ \frac{41}{37} & 1 \end{array}\right)$	$\left(\begin{array}{cc} 12 & 2\\ -\frac{11}{37} & \frac{66}{37} \end{array}\right)$	$row\ 2 \leftarrow \ row\ 2 - \ row\ 1$
7	$\left(\begin{array}{cc} 12 & 2 \\ 1 & 2 \end{array}\right)$	$\left(\begin{array}{cc} 1 & 0\\ \frac{4}{37} & 1 \end{array}\right)$	$ \left(\begin{array}{cc} 12 & 2\\ -\frac{11}{37} & \frac{66}{37} \end{array}\right) $	exchange rows 1 and 2
6	$\left(\begin{array}{cc} 1 & 2 \\ 12 & 2 \end{array}\right)$	$\left(\begin{array}{cc} 1 & 0\\ \frac{16}{5} & 1 \end{array}\right)$	$\left(\begin{array}{cc} 1 & 2\\ \frac{44}{5} & -\frac{22}{5} \end{array}\right)$	$row\ 2 \leftarrow \ row\ 2 - 3 \cdot \ row\ 1$
11	$ \left(\begin{array}{cc} 1 & 2 \\ 9 & -4 \end{array}\right) $	$\left(\begin{array}{cc} 1 & 0\\ \frac{1}{5} & 1 \end{array}\right)$	$ \left(\begin{array}{cc} 1 & 2 \\ \frac{44}{5} & -\frac{22}{5} \end{array}\right) $	

Table: Trace of the basis reduction Algorithm 11.

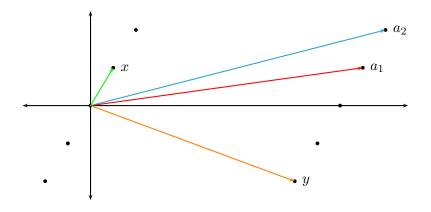


Figure: The vectors computed by the basis reduction Algorithm 11.