The art of cryptography: Lattices and cryptography, summer 2013

PROF. DR. JOACHIM VON ZUR GATHEN, DR. DANIEL LOEBENBERGER

5. Exercise sheet Hand in solutions until Sunday, 26 May 2013, 23:59h.

Exer	cise 5.1 (Filling a gap). (5 points)	
Prov Gran	e that in the replacement step in the lattice basis reduction algorithm the n-Schmidt orthogonal vectors do not change.	5
Exer	cise 5.2 (The basis reduction algorithm). (24+3 points)	
In this exercise we will do several experiments with the lattice basis reduction al- gorithm. For this particular task, we need a running implementation in which we can look in.		
(i)	Implement the basis reduction algorithm in a programming language of your choice. Hand in the source code.	15
(ii)	For several bases (the choice is up to you) compare the result of your al- gorithm with the result of some running library function, such as the LLL function in NTL. What do you observe?	+2
Now	consider the lattice $L = \mathcal{L}(B)$ spanned by the basis $B = \begin{bmatrix} 2 & 1 & 5 & 8 \\ 7 & 2 & 5 & 5 \\ 2 & 3 & 1 & 1 \\ 5 & 8 & 9 & 9 \end{bmatrix}$.	
(iii)	Minkowski's theorem states that for any lattice we have $\lambda(L) \leq \sqrt{n} \det(L)^{1/n}$. What is the value of this bound in our example?	2
(iv)	What is the length of the shortest vector in the output of the basis reduction algorithm?	1
(v)	What is the value of the integer $\mathcal{D} = \prod_{i=1}^{4} \det(\mathcal{L}(b_1, \dots, b_i))^2$ for the input basis?	2
(vi)	What is the number of iterations predicted by the running time analysis from the lecture?	1
(vii)	What is the value of $\mathcal D$ upon finding a reduced basis?	1
(viii)	Give an upper bound on the number of iterations based on the initial and final value of \mathcal{D} .	2
(ix)	What is the number of iterations actually executed?	+1

Exercise 5.3 (Find a correct proof).

(0+7 points)

Prove the following

+7

Lemma. Let $L \subseteq \mathbb{R}^n$ be a lattice with basis (b_1, \ldots, b_ℓ) and Gram-Schmidt orthogonal basis $(b_1^*, \ldots, b_\ell^*)$. Then for any nonzero $x \in L$ we have

$$\min\{\|b_1^*\|,\ldots,\|b_\ell^*\|\} \le \|x\|.$$